A Reconfigurable Disparity Engine for Stereovision in Advanced Driver Assistance Systems

  • Mehdi Darouich
  • Stephane Guyetant
  • Dominique Lavenier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5992)


Depth extraction in stereovision applications is very time-consuming and requires hardware acceleration in real-time context. A large number of methods have been proposed to handle this task. Each method answers more or less to real-time constraints, depending on the applicative context and user’s needs. Thus, flexibility is a strong requirement for a generic hardware acceleration solution, particularly when ASIC implementation is targeted. This paper presents REEFS, a reconfigurable architecture for embedded real-time stereovision applications. This architecture is composed of three reconfigurable modules that enable flexibility at each step of depth extraction, from correlation window size to the matching method. It generates VGA depth maps with 64 disparity levels at almost 87 frames per second, answering hard real-time requirements, like in Advanced Driver Assistance Systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambrosch, K., Kubinger, W., Humenberger, M., Steininger, A.: Flexible hardware-based stereo matching. EURASIP J. Embedded Syst. 2008, 1–12 (2008)CrossRefGoogle Scholar
  2. 2.
    Cuadrado, C., Zuloaga, A., Martin, J., Lazaro, J., Jimenez, J.: Real-time stereo vision processing system in a fpga. In: Proc. IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, pp. 3455–3460 (2006)Google Scholar
  3. 3.
    Fua, P.: A Parallel Stereo Algorithm that Produces Dense Depth Maps and Preserves Image Features. Machine Vision and Applications 6, 35–49 (1993)CrossRefGoogle Scholar
  4. 4.
    Hirschmüller, H., Innocent, P.R., Garibaldi, J.: Real-time correlation-based stereo vision with reduced border errors. Int. J. Comput. Vision 47, 229–246 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Jacobi, R., Cardoso, R., Borges, G.: Voc: a reconfigurable matrix for stereo vision processing. In: Proc. 20th Int. Parallel and Distributed Processing Symposium (2006)Google Scholar
  6. 6.
    Kraft, G., Jonker, P.: Real-time stereo with dense output by a simd-computed dynamic programming algorithm. In: PDPTA 2002: Proc. of the Int. Conf. on Parallel and Distributed Processing Techniques and Applications (2002)Google Scholar
  7. 7.
    Muhlmann, K., Maier, D., Hesser, R., Manner, R.: Calculating dense disparity maps from color stereo images, an efficient implementation. In: Proc. IEEE Workshop on Stereo and Multi-Baseline Vision (2001)Google Scholar
  8. 8.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. of Computer Vision 47, 7–42 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Woodfill, J., Gordon, G., Buck, R.: Tyzx deepsea high speed stereo vision system. In: Proc. Conference on Computer Vision and Pattern Recognition Workshop CVPRW 2004, p. 41 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mehdi Darouich
    • 1
  • Stephane Guyetant
    • 1
  • Dominique Lavenier
    • 2
  1. 1.CEA LIST, Embedded Computing Laboratory, PC94, Gif-sur-YvetteFrance
  2. 2.ENS Cachan Bretagne / IRISA, Campus de BeaulieuRennesFrance

Personalised recommendations