A Framework for Enabling Fault Tolerance in Reconfigurable Architectures

  • Kostas Siozios
  • Dimitrios Soudris
  • Dionisios Pnevmatikatos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5992)


Fault tolerance is a pre-request not only for safety critical systems, but almost for the majority of applications. However, the additional hardware elements impose performance degradation. In this paper we propose a software-supported methodology for protecting reconfigurable architectures against Single Event Upsets (SEUs), even if the target device is not aware about this feature. This methodology initially predicts areas of the target architecture where faults are most possible to occur and then inserts selectively redundancy only there. Based on experimental results, we show that our proposed selectively fault-tolerance results to a better tradeoff between desired level of reliability and area, delay, power overhead.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lach, J., Mangione-Smith, W., Potkonjak, M.: Efficiently Supporting Fault-Tolerance in FPGAs. In: Int. Symp. on FPGAs, pp. 105–115 (1998)Google Scholar
  2. 2.
    Nikolic, K., Sadek, A., Forshaw, M.: Fault-tolerant techniques for nanocomputers. Nanotechnology 13, 357–362 (2002)CrossRefGoogle Scholar
  3. 3.
    Bhaduri, D., Shukla, S.: NANOPRISM: A Tool for Evaluating Granularity vs. In: Reliability Trade-offs in Nano Architectures. GLS-VLSI, pp. 109–112 (2004)Google Scholar
  4. 4.
    Kastensmidt, F., Carro, L., Reis, R.: Fault-Tolerance Techniques for SRAM-Based FPGAs. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Pratt, B., et al.: Improving FPGA Design Robustness with Partial TMR. In: International Reliability Physics Symposium, pp. 226–232 (2006)Google Scholar
  6. 6.
    Sterpone, L., et al.: On the design of tunable fault tolerant circuits on SRAM-based FPGAs for safety critical applications. In: DATE Conference, pp. 336–341 (2008)Google Scholar
  7. 7.
    Yang, S.: Logic Synthesis and Optimization Benchmarks, Tech. Report (1991)Google Scholar
  8. 8.
  9. 9.
    Ziegler, J., et al.: IBM Experiments in Soft Fails in Computer Electronics (1978-1994). IBM Journal of Research and Development 40(1), 3–18 (1996)CrossRefGoogle Scholar
  10. 10.
    2D MEANDER Framework,
  11. 11.
    Colinge, J.: Silicon-on-Insulator Technology: Overview and Device Physics. In: IEEE Nuclear Space Radiation Effects Conference 2001 (2001)Google Scholar
  12. 12.
    Yu, J., et al.: Defect Tolerant FPGA Switch Block and Connection Block with Fine Grain Redundancy for Yield Enhancement. In: FPGA, pp. 255–262 (2005)Google Scholar
  13. 13.
    Jain, R., Mukherjee, A., Paul, K.: Defect Aware Design Paradigm for Reconfigurable Architectures. In: Computer Society Annual Symposium on VLSI, pp. 91–96 (2006)Google Scholar
  14. 14.
    Doumar, A., Ito, H.: Defect and Fault tolerance FPGAs by shifting the configuration data. In: IEEE Symposium on Defect and Fault-tolerance, pp. 377–385 (1999)Google Scholar
  15. 15.
    Camregher, N., et al.: Analysis of Yield Loss due to Random Photolithographic Defects in the Interconnect Structure of FPGAs. In: FPGA, pp. 138–148 (2005)Google Scholar
  16. 16.
    Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata Studies, pp. 43–98 (1956)Google Scholar
  17. 17.
    Black, J.: Electromigration - A Brief Survey and Some Recent Results. IEEE Transaction on Electron Devices ED-16, 338–347 (1974)Google Scholar
  18. 18.
    Siozios, K., Soudris, D.: A Power-Aware Placement and Routing Algorithm Targeting 3D FPGAs. Journal of Low-Power Electronics 4(3), 275–289 (2008)CrossRefGoogle Scholar
  19. 19.
    Soudris, D., et al.: AMDREL: A Novel Low-Energy FPGA Architecture and Supporting CAD Tool Design Flow. In: Fine and Coarse-Grain Reconfigurable Systems, pp. 152–180 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kostas Siozios
    • 1
  • Dimitrios Soudris
    • 1
  • Dionisios Pnevmatikatos
    • 2
  1. 1.School of Elect. & Computer Eng.National Technical University of AthensGreece
  2. 2.Electronic & Computer Eng. DepartmentTechnical University of CreteGreece

Personalised recommendations