Word Length n-Grams for Text Re-use Detection

  • Alberto Barrón-Cedeño
  • Chiara Basile
  • Mirko Degli Esposti
  • Paolo Rosso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6008)


The automatic detection of shared content in written documents –which includes text reuse and its unacknowledged commitment, plagiarism– has become an important problem in Information Retrieval. This task requires exhaustive comparison of texts in order to determine how similar they are. However, such comparison is impossible in those cases where the amount of documents is too high. Therefore, we have designed a model for the proper pre-selection of closely related documents in order to perform the exhaustive comparison afterwards. We use a similarity measure based on word-level n-grams, which proved to be quite effective in many applications As this approach becomes normally impracticable for real-world large datasets, we propose a method based on a preliminary word-length encoding of texts, substituting a word by its length, providing three important advantages: (i) being the alphabet of the documents reduced to nine symbols, the space needed to store n-gram lists is reduced; (ii) computation times are decreased; and (iii) length n-grams can be represented in a trie, allowing a more flexible and fast comparison. We experimentally show, on the basis of the perplexity measure, that the noise introduced by the length encoding does not decrease importantly the expressiveness of the text. The method is then tested on two large datasets of co-derivatives and simulated plagiarism.


word length encoding text similarity analysis text reuse analysis plagiarism detection information retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval, p. 192. Addison-Wesley Longman, Amsterdam (1999)Google Scholar
  2. 2.
    Barrón-Cedeño, A., Eiselt, A., Rosso, P.: Monolingual Text Similarity Measures: A Comparison of Models over Wikipedia Articles Revisions. In: Proceedings of the ICON 2009: 7th International Conference on Natural Language Processing, pp. 29–38. Macmillan Publishers, Basingstoke (2009)Google Scholar
  3. 3.
    Basile, C., Benedetto, D., Caglioti, E., Cristadoro, G., Degli Esposti, M.: A plagiarism detection procedure in three steps: selection, matches and “squares”. In: Stein, B., Rosso, P., Stamatatos, E., Koppel, M., Agirre, E. (eds.) SEPLN 2009 Workshop on Uncovering Plagiarism, Authorship, and Social Software Misuse (PAN 2009), pp. 1–9. (2009)Google Scholar
  4. 4.
    Bernstein, Y., Zobel, J.: A Scalable System for Identifying Co-Derivative Documents. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 55–67. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Bigi, B.: Using Kullback-Leibler distance for text categorization. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 305–319. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Broder, A.Z.: On the Resemblance and Containment of Documents. In: Compression and Complexity of Sequences (SEQUENCES 1997), pp. 21–29. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  7. 7.
    Clough, P., Gaizauskas, R., Piao, S., Wilks, Y.: Measuring Text Reuse. In: Proceedings of Association for Computational Linguistics (ACL 2002), Philadelphia, PA, pp. 152–159 (2002)Google Scholar
  8. 8.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  9. 9.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An introduction to natural language processing, computational linguistics, and speech recognition, 2nd edn. Prentice-Hall, Englewood Cliffs (2009)Google Scholar
  10. 10.
    Kang, N., Gelbukh, A., Han, S.-Y.: PPChecker: Plagiarism pattern checker in document copy detection. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 661–667. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Kullback, S., Leibler, R.: On information and sufficiency. Annals of Mathematical Statistics 22(1), 79–86 (1951)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lyon, C., Malcolm, J., Dickerson, B.: Detecting Short Passages of Similar Text in Large Document Collections. In: Conference on Empirical Methods in Natural Language Processing, Pennsylvania, pp. 118–125 (2001)Google Scholar
  13. 13.
    Maurer, H., Kappe, F., Zaka, B.: Plagiarism - A Survey. Journal of Universal Computer Science 12(8), 1050–1084 (2006)Google Scholar
  14. 14.
    Metzler, D., Bernstein, Y., Croft, B.W., Moffat, A., Zobel, J.: Similarity Measures for Tracking Information Flow. In: Conference on Information and Knowledge Management, pp. 517–524. ACM Press, New York (2005)Google Scholar
  15. 15.
    Potthast, M., Stein, B., Eiselt, A., Barrón-Cedeño, A., Rosso, P.: Overview of the 1st International Competition on Plagiarism Detection. In: Stein, B., Rosso, P., Stamatatos, E., Koppel, M., Agirre, E. (eds.) SEPLN 2009 Workshop on Uncovering Plagiarism, Authorship, and Social Software Misuse, PAN 2009, pp. 1–9. (2009)Google Scholar
  16. 16.
    Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: Local Algorithms for Document Fingerprinting. In: 2003 ACM SIGMOD International Conference on Management of Data. ACM, New York (2003)Google Scholar
  17. 17.
    Stein, B., Meyer zu Eissen, S., Potthast, M.: Strategies for Retrieving Plagiarized Documents. In: Clarke, C., Fuhr, N., Kando, N., Kraaij, W., de Vries, A. (eds.) 30th Annual International ACM SIGIR Conference, pp. 825–826. ACM, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alberto Barrón-Cedeño
    • 1
  • Chiara Basile
    • 2
  • Mirko Degli Esposti
    • 2
  • Paolo Rosso
    • 1
  1. 1.NLEL-ELiRF, Department of Information Systems and ComputationUniversidad Politécnica de ValenciaSpain
  2. 2.Dipartimento di MatematicaUniversità di BolognaItaly

Personalised recommendations