Worth Its Weight in Gold or Yet Another Resource — A Comparative Study of Wiktionary, OpenThesaurus and GermaNet

  • Christian M. Meyer
  • Iryna Gurevych
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6008)


In this paper, we analyze the topology and the content of a range of lexical semantic resources for the German language constructed either in a controlled (GermaNet), semi-controlled (OpenThesaurus), or collaborative, i.e. community-based, manner (Wiktionary). For the first time, the comparison of the corresponding resources is performed at the word sense level. For this purpose, the word senses of terms are automatically disambiguated in Wiktionary and the content of all resources is converted to a uniform representation. We show that the resources’ topology is well comparable as they share the small world property and contain a comparable number of entries, although differences in their connectivity exist. Our study of content related properties reveals that the German Wiktionary has a different distribution of word senses and contains more polysemous entries than both other resources. We identify that each resource contains the highest number of a particular type of semantic relation. We finally increase the number of relations in Wiktionary by considering symmetric and inverse relations that have been found to be usually absent in this resource.


Random Graph Semantic Relatedness Average Path Length Word Sense Smallmouth Bass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database (Language, Speech, and Communication). MIT Press, Cambridge (1998)Google Scholar
  2. 2.
    Kunze, C., Lemnitzer, L.: GermaNet — representation, visualization, application. In: Proceedings of the Third International Conference on Language Resources and Evaluation, Las Palmas, Canary Islands, Spain, vol. 5, pp. 1485–1491 (2002)Google Scholar
  3. 3.
    Zesch, T., Müller, C., Gurevych, I.: Using Wiktionary for Computing Semantic Relatedness. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, IL, USA, pp. 861–867 (2008)Google Scholar
  4. 4.
    Naber, D.: OpenThesaurus: ein offenes deutsches Wortnetz. In: Sprachtechnologie, mobile Kommunikation und linguistische Ressourcen: Beiträge zur GLDV-Tagung, Bonn, Germany, pp. 422–433 (2005)Google Scholar
  5. 5.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall Series in Artificial Intelligence. Prentice Hall, Upper Saddle River (2000)Google Scholar
  6. 6.
    Zesch, T., Müller, C., Gurevych, I.: Extracting Lexical Semantic Knowledge from Wikipedia and Wiktionary. In: Proceedings of the 6th International Conference on Language Resources and Evaluation, Marrakech, Morocco, pp. 1646–1652 (2008)Google Scholar
  7. 7.
    Garoufi, K., Zesch, T., Gurevych, I.: Graph-Theoretic Analysis of Collaborative Knowledge Bases in Natural Language Processing. In: Proceedings of the Poster Session of the 7th International Semantic Web Conference, Karlsruhe, Germany (2008)Google Scholar
  8. 8.
    Navarro, E., Sajous, F., Gaume, B., Prévot, L., Hsieh, S., Kuo, I., Magistry, P., Huang, C.R.: Wiktionary for natural language processing: methodology and limitations. In: Proceedings of the ACL 2009 Workshop, The People’s Web Meets NLP: Collaboratively Constructed Semantic Resources, Suntec, Singapore, pp. 19–27 (2009)Google Scholar
  9. 9.
    Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 1606–1611 (2007)Google Scholar
  10. 10.
    Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar
  11. 11.
    Artstein, R., Poesio, M.: Inter-Coder Agreement for Computational Linguistics. Computational Linguistics 34(4), 555–596 (2008)CrossRefGoogle Scholar
  12. 12.
    Passonneau, R.J.: Measuring agreement on set-valued items (MASI) for semantic and pragmatic annotation. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation, Genoa, Italy, pp. 831–836 (2006)Google Scholar
  13. 13.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Nagelkerke, N.J.D.: A note on a general definition of the coefficient of determination. Biometrika 78(3), 691–692 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  17. 17.
    Ravasz, E., Somera, A.L., Mongru, D., Oltvai, Z.N., Barabási, A.L.: Hierarchical Organization of Modularity in Metabolic Networks. Science 297(5586), 1551–1555 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christian M. Meyer
    • 1
  • Iryna Gurevych
    • 1
  1. 1.Ubiquitous Knowledge Processing LabTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations