Framework for Modular, Flexible and Efficient Solving the Cardiac Bidomain Equations Using PETSc

Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 15)


In this work, a new framework is presented that is suitable to solve the cardiac bidomain equation efficiently using the scientific computing library PETSc. Furthermore, the framework is able to modularly combine different ionic channels and is flexible enough to include arbitrary heterogeneities in ionic or coupling channel density. The ability of this framework is demonstrated in an example simulation in which the three-dimensional electrophysiological heterogeneity was adjusted in order to get a positive T-wave in the body electrocardiogram (ECG).


Bidomain Model Electrophysiological Model Bidomain Equation Conjugate Gradient Solver Electrophysiological Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colli Franzone, P., Deuflhard, P., Erdmann, B., Lang, J., Pavarino, L.F.: SIAM J. Sci. Comput. 28/3, 942–962 (2006)Google Scholar
  2. 2.
    Henriquez, C.S., Muzikant, A.L., Smoak, C.K.: J. Cardiovasc. Electrophysiol. 7, 424–444 (1996)CrossRefGoogle Scholar
  3. 3.
    Hodgkin, A.L., Huxley, A.F.: J. Physiol. 177, 500–544 (1952)Google Scholar
  4. 4.
    Karl, M., Seemann, G., Sachse, F.B., Dössel, O., Heuveline, V.: Proc. MBEC, accepted (2008)Google Scholar
  5. 5.
    Plank, G., Liebmann, M., dos Santos, R.W., Vigmond, E.J., Haase, G.: IEEE Trans. Biomed. Eng. 54/4, 585–596 (2007)Google Scholar
  6. 6.
    Rush, S., Larsen, H.: IEEE Trans. Biomed. Eng. 25/4, 389–392 (1978)Google Scholar
  7. 7.
    Scacchi, S.: Comput. Methods Appl. Mech. Engrg. 197/45, 4051–4061 (2008)Google Scholar
  8. 8.
    Sundnes, J., Lines, G.T., Tveito, A.: Math. Biosc. 172/2, 55–72 (2001)Google Scholar
  9. 9.
    Skouibine, K., Trayanova, N.A., Moore, P.: Math. Biosc. 166/1, 85–100 (2000)Google Scholar
  10. 10.
    ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V.: Am. J. Physiol. 286, H1573–H1589 (2004)Google Scholar
  11. 11.
    Vigmond, E.J., Aguel, F.N., Trayanova, N.A.: IEEE Trans. Biomed. Eng. 49/11, 1260–1269 (2002)Google Scholar
  12. 12.
    Weiss, D.L., Seemann, G., Dössel, O.: Biomed. Technik 50, 566–567 (2005)Google Scholar
  13. 13.
    Weiss, D.L., Seemann, G., Keller, D.U.J., Farina, D., Sachse, F.B., Dössel, O.: Comput Cardiol 34, 49–52 (2007)CrossRefGoogle Scholar
  14. 14.
    Whiteley, J.: Ann. Biomed. Engin. 36/8, 1398–1408 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Biomedical EngineeringUniversität Karlsruhe (TH), Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Nora Eccles Harrison Cardiovascular Research and Training InstituteUniversity of UtahSalt Lake CityUSA
  3. 3.Institute for Applied and Numerical MathematicsUniversität Karlsruhe (TH), Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations