Graphical Template Language for Transformation Synthesis

  • Elina Kalnina
  • Audris Kalnins
  • Edgars Celms
  • Agris Sostaks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5969)


Higher-Order Transformations (HOT) have become an important support for the development of model transformations in various transformation languages. Most frequently HOTs are used to synthesize transformations from different kinds of models, for example, mapping models. This means that model driven development (MDD) is being successfully applied to transformations themselves too. The standard HOT solution is to create the transformation as a model using the abstract syntax. However, for graphical transformation languages a significantly more efficient solution would be to create the transformation using its graphical (concrete) syntax. An analogy could be the textual template languages such as JET which directly create texts from a model in the concrete syntax of the target language. This paper introduces a new kind of language - a graphical template language for transformation synthesis, named Template MOLA. This language is used for creation of transformations in MOLA transformation language. Template MOLA is an adequate solution for many typical HOT applications.


Model Transformation Abstract Syntax Transformation Language Concrete Syntax Class Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bezivin, J.: On the use of higher-order model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Didonet Del Fabro, M., Bezivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a generic model weaver. In: Proceedings of the 1ère Journée sur l’Ingénierie Dirigée par les Modèles (2005)Google Scholar
  4. 4.
    Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 62–76. Springer, Heidelberg (2005)Google Scholar
  5. 5.
  6. 6.
    OMG, MOF Model to Text Transformation Language, v1.0. OMG Document Number: formal/2008-01-16,
  7. 7.
    UL IMCS, MOLA pages,
  8. 8.
    Kalnina, E., Kalnins, A.: DSL tool development with transformations and static mappings. In: Chaudron, M.R.V. (ed.) Models in Software Engineering, Workshops and Symposia at MODELS 2008. LNCS, vol. 5421, pp. 356–370. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Cuadrado, J.S., Molina, J.G.: Approaches for Model Transformation Reuse: Factorization and Composition. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 168–182. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., Barzdins, J.: Building Tools by Model Transformations in Eclipse. In: Proceedings of DSM 2007 workshop of OOPSLA 2007, Montreal, Canada, Jyvaskyla University Printing House, pp. 194–207 (2007)Google Scholar
  11. 11.
    Visual Automated Model Transformations (VIATRA2), GMT subproject, Budapest BME,
  12. 12.
    Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Systems Journal 45(3), 621–645 (2006)CrossRefGoogle Scholar
  13. 13.
    Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Gronmo, R., Moller-Pedersen, B., Olsen, G.K.: Comparison of Three Model Transformation Languages. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 2–17. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    de Lara, J., Vangheluwe, H.: AToM: A Tool for Multi-formalism and Meta-modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Elina Kalnina
    • 1
  • Audris Kalnins
    • 1
  • Edgars Celms
    • 1
  • Agris Sostaks
    • 1
  1. 1.University of Latvia, IMCSRigaLatvia

Personalised recommendations