Advertisement

Abstract

Bisimulation reduction is a classical means to fight the infamous state space explosion problem, which limits the applicability of automated methods for verification like model checking. A signature-based method, originally developed by Blom and Orzan for labeled transition systems and adapted for Markov chains by Derisavi, has proved to be very efficient. It is possible to implement it symbolically using binary decision diagrams such that it is able to handle very large state spaces efficiently. We will show, however, that for Markov chains this algorithm suffers from numerical instabilities, which often result in too large quotient systems. We will present and experimentally evaluate two different approaches to avoid these problems: first the usage of rational arithmetic, and second an approach not only to represent the system structure but also the transition rates symbolically. In addition, this allows us to modify their actual values after the quotient computation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wegener, I.: Branching Programs and Binary Decision Diagrams – Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications, p. 408. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)zbMATHGoogle Scholar
  2. 2.
    Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking. Formal Methods in System Design 21(1), 39–78 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Katoen, J.P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimization mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R., Rakow, J., Wimmer, R., Becker, B.: Compositional dependability evaluation for Statemate. IEEE Transactions on Software Engineering 35(2), 274–292 (2009)CrossRefGoogle Scholar
  5. 5.
    Blom, S., Haverkort, B.R., Kuntz, M., van de Pol, J.: Distributed Markovian bisimulation reduction aimed at CSL model checking. In: Černá, I., Lüttgen, G. (eds.) 7th Int’l Workshop on Parallel and Distributed Methods in Verification (PDMC). Electronic Notes in Theoretical Computer Science, vol. 220(2), pp. 35–50 (2008)Google Scholar
  6. 6.
    Derisavi, S.: A symbolic algorithm for optimal markov chain lumping. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 139–154. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Derisavi, S.: Signature-based symbolic algorithm for optimal Markov chain lumping. In: 4th Int’l Conf. on Quantitative Evaluation of Systems (QEST), Edinburgh, Scotland, pp. 141–150. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  8. 8.
    Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Information Processing Letters 87(6), 309–315 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Wimmer, R., Derisavi, S., Hermanns, H.: Symbolic partition refinement with dynamic balancing of time and space. In: Rubino, G. (ed.) 5th Int’l Conf. on Quantitative Evaluation of Systems (QEST), Saint-Malo, France, pp. 65–74. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  10. 10.
    Blom, S., Orzan, S.: Distributed state space minimization. Software Tools for Technology Transfer (STTT) 7(3), 280–291 (2005)CrossRefGoogle Scholar
  11. 11.
    Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref – A symbolic bisimulation tool box. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 477–492. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for Markov chains. Information and Computation 200(2), 149–214 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Computers 35(8), 677–691 (1986)zbMATHCrossRefGoogle Scholar
  14. 14.
    IEEE Computer Society Standards Committee. Working group of the Microprocessor Standards Subcommittee, American National Standards Institute: IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. IEEE Computer Society Press, Silver Spring, MD 20910, USA (1985)Google Scholar
  15. 15.
    Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys 23(1), 5–48 (1991)CrossRefGoogle Scholar
  16. 16.
    Somenzi, F.: Cudd: Cu decision diagram package, release 2.4.2 (2009)Google Scholar
  17. 17.
    GNU: GNU multiple precision arithmetic library (GMP), version 4.3.1 (2009), http://gmplib.org.
  18. 18.
    Sanders, W.H., Malhis, L.M.: Dependability evaluation using composed SAN-based reward models. Journal Parallel and Distributed Computing 15(3), 238–254 (1992)CrossRefGoogle Scholar
  19. 19.
    Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Ibe, O., Trivedi, K.: Stochastic Petri net models of polling systems. IEEE Journal on Selected Areas in Communications 8(9), 1649–1657 (1990)CrossRefGoogle Scholar
  21. 21.
    Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking. Software Tools for Technology Transfer (STTT) 8(3), 216–228 (2006)CrossRefGoogle Scholar
  22. 22.
    Ciardo, G., Tilgner, M.: On the use of Kronecker operators for the solution of generalized stochastic Petri nets. ICASE Report 96–35, Institute for Computer Applications in Science and Engineering, ICASE (1996)Google Scholar
  23. 23.
    Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. Theoretical Computer Science 319(3), 239–257 (2008)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Lecca, P., Priami, C.: Cell cycle control in eukaryotes: A BioSpi model. Electronic Notes in Theoretical Computer Science 180(3), 51–63 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ralf Wimmer
    • 1
  • Bernd Becker
    • 1
  1. 1.Chair of Computer ArchitectureAlbert-Ludwigs-University Freiburg im BreisgauGermany

Personalised recommendations