Accuracy of Strong and Weak Comparisons for Network of Queues

  • Hind Castel-Taleb
  • Nihal Pekergin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5987)


Quality of performance measure bounds is crucial for an accurate dimensioning of computer network resources. We study stochastic comparisons of multidimensional Markov processes for which quantitative analysis could be intractable if there is no specific solution form. On partially ordered state space, different stochastic orderings can be defined as the strong or the less constrained weak ordering. The goal of the present paper is to compare these two orderings with respect the quality of derived bounds. We propose to study a system similar to a Jackson network except that queues have finite capacity. Different bounding systems are built either in the sense of the strong ordering with hard constraints, or in the sense of the weak ordering with less ones. The proofs of the stochastic comparisons are done using the coupling and the increasing set methods, with an intuitive event based formalism. The qualities of bounding systems are compared regarding to blocking probabilities.


Markov processes Jackson networks stochastic comparisons blocking probabilities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ridder, A.: Weak stochastic ordering for multidimensionnal Markov chains. Oper. Research Letters 18, 121–126 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Castel-Taleb, H., Mokdad, L.: Performance measure bounds in wireless networks by state space reduction. In: 13th Annual Meeting of the IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2005), Atlanta Georgia, September 27-29 (2005)Google Scholar
  3. 3.
    Castel-Taleb, H., Mokdad, L., Pekergin, N.: Loss rates bounds for IP switches in MPLS networks. In: ACS/IEEE International Conference on Computer Systems and Applications, AICCSA 2006, Dubai/Sharjah, UAE, March 8-11 (2006)Google Scholar
  4. 4.
    Castel-Taleb, H., Mokdad, L., Pekergin, N.: Aggregated bounding Markov processes applied to the analysis of tandem queues. In: Second International Conference on Performance Evaluation Methodologies and Tools, ACM Sigmetrics, ValueTools 2007, Nantes, France, October 23-25 (2007)Google Scholar
  5. 5.
    Castel-Taleb, H., Pekergin, N.: Weak stochastic comparisons for performability verification. In: Al-Begain, K., Fiems, D., Horváth, G. (eds.) ASMTA 2009. LNCS, vol. 5513, pp. 294–308. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Castel-Taleb, H., Pekergin, N.: Stochastic monotonicity in queueing networks. In: Bradley, J.T. (ed.) EPEW 2009. LNCS, vol. 5652, pp. 116–130. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Castel-Taleb, H., Pekergin, N.: Stochastic monotonicity for the comparison of multidimensionnal Markov chains (submitted)Google Scholar
  8. 8.
    Doisy, M.: Comparaison de processus Markoviens. PHD thesis, Univ. de Pau et des pays de l’Adour 92Google Scholar
  9. 9.
    Economous, A.: Necessary and sufficient condition for the stochastic comparison of Jackson Networks. Prob. in the Engineering and Informational Sciences 17, 143–151 (2003)Google Scholar
  10. 10.
    Fourneau, J.M., Pekergin, N.: An algorithmic approach to stochastic bounds. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, p. 64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Lindvall, T.: Lectures on the coupling method. Wiley series in Probability and Mathematical statistics (1992)Google Scholar
  12. 12.
    Lindvall, T.: Stochastic monotonicities in Jackson queueing networks. Prob. in the Engineering and Informational Sciences 11, 1–9 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lopez, F.J., Martinez, S., Sanz, G.: Stochastic domination and Markovian couplings. Adv. Appl. Prob. 32, 1064–1076 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Massey, W.: An Operator-analytic approach to the Jackson network. J. Appl. Prob. 21, 379–393 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Massey, W.: Stochastic orderings for Markov processes on partially ordered spaces. Mathematics of Operations Research 12(2) (May 1987)Google Scholar
  16. 16.
    Massey, W.: A family of bounds for the transient behavior of a Jackson network. J. Appl. Prob., 543–549 (1986)Google Scholar
  17. 17.
    Mokdad, L., Castel-Taleb, H.: Stochastic comparisons: a methodology for the performance evaluation of fixed and mobile networks. Computer Communications 31(17) (November 2008)Google Scholar
  18. 18.
    Shaked, M., Shantikumar, J.G.: Stochastic Orders and Their Applications. Academic Press, Boston (1994)zbMATHGoogle Scholar
  19. 19.
    Stoyan, D.: Comparison methods for queues and other stochastics models. J. Wiley and Son, Chichester (1976)Google Scholar
  20. 20.
    Van Dijk, N.M.: Queueing networks and product forms, a system approach. John Wiley and Sons, Chichester (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hind Castel-Taleb
    • 1
  • Nihal Pekergin
    • 2
  1. 1.INSTITUT TELECOMTELECOM SudParisEvry CedexFrance
  2. 2.LACLUniversité Paris-EstCréteil CedexFrance

Personalised recommendations