Task Allocation in Mesh Connected Processors with Local Search Meta-heuristic Algorithms

  • Wojciech Kmiecik
  • Marek Wojcikowski
  • Leszek Koszalka
  • Andrzej Kasprzak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5991)


This article contains a short analysis of applying three metaheuristic local search algorithms to solve the problem of allocating two-dimensional tasks on a two-dimensional processor mesh in a period of time. The primary goal is to maximize the level of mesh utilization. To achieve this task we adapted three algorithms: Tabu Search, Simulated Annealing and Random Search, as well as created a helper algorithm Dumb Fit and adapted another helper algorithm – First Fit. To measure the algorithms’ efficiency we introduced our own evaluating function Cumulative Effectiveness and a derivative Utilization Factor. Finally, we implemented an experimentation system to test these algorithms on different sets of tasks to allocate. In this article there is a short analysis of series of experiments conducted on three different classes of task sets: small tasks, mixed tasks and large tasks.


Network structure task allocation Tabu Search Simmulated Annealing experimentation system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goh, L.K., Veeravalli, B.: Design and Performance Evaluation of Combined First-Fit Task Allocation and Migration Strategies in Mesh Multiprocessor Systems. Parallel Computing 34, 508–520 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Buzbee, B.L.: The Efficiency of Parallel Processing. Frontiers of Supercomputing, Los Alamos (1983)Google Scholar
  3. 3.
    Glover, F.: Tabu Search – part I. ORSA Journal on Computing 1(3) (1989)Google Scholar
  4. 4.
    Kirkpatrick, S., Gelatti, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science New Series 220(4598), 671–680 (1983)Google Scholar
  5. 5.
    Granville, V., Krivanek, M., Rasson, J.P.: Simulated Annealing: A Proof of Convergence. IEEE Trans. on Pattern Analysis and Machine Intelligence 16, 652–656 (1994)CrossRefGoogle Scholar
  6. 6.
    Laarhoven, J.M., Emile, H., Aarts, L.: Simulated Annealing: Theory and Applications. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  7. 7.
    Glover, F., Kochenberger, G.A.: Handbook of Metaheuristics. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Byung, S., Das, C.R.: A Fast and Efficient Processor Allocation Scheme for Mesh Connected Multi-computers. IEEE Trans. on Computers 1, 46–59 (2002)Google Scholar
  9. 9.
    Koszalka, L.: Simulation-based Evaluation of Distributed Mesh Allocation Algorithms. In: Thulasiraman, P., He, X., Xu, T.L., Denko, M.K., Thulasiram, R.K., Yang, L.T. (eds.) ISPA Workshops 2007. LNCS, vol. 4743, pp. 335–344. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Koszalka, L., Lisowski, D., Pozniak-Koszalka, I.: Comparison of Allocation Algorithms for Mesh Networks with Multistage Experiment. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3984, pp. 58–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wojciech Kmiecik
    • 1
  • Marek Wojcikowski
    • 1
  • Leszek Koszalka
    • 1
  • Andrzej Kasprzak
    • 1
  1. 1.Dept. of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations