Advertisement

Algorithmic Aspects of the Reachability of Conflicting Chip Firing Game

  • Le Manh Ha
  • Nguyen Anh Tam
  • Phan Thi Ha Duong
Part of the Studies in Computational Intelligence book series (SCI, volume 283)

Abstract

Chip-firing game is a cellular automaton model on finite directed graphs often used to describe the phenomenon of self-organized criticality. Here we investigate a variation of the chip-firing game on a directed acyclic graph G = (V, E). Starting from a given chip configuration, we can fire a vertex v by sending one chip along one of its outgoing edges to the corresponding neighbors if v has at least one chip. We study the reachability of this system by considering the order structure of its configuration space. Then we propose an efficient algorithm to determine this reachability.

Keywords

Conflicting chip firing game dynamic system energies multi agents system order filter order structure reachability self organization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meszaros, K., Peres, Y., Propp, J., Holroyd, A.E., Levine, L., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs. In and out of equilibrium 2., Progr. Probab. 60, 331–364 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. rev. A (38), 364–374 (1988)Google Scholar
  3. 3.
    Bianconi, G., Marsili, M.: Clogging and selforganized criticality in complex networks. Phys. Rev. E 70, 035105 (R) (2004)CrossRefGoogle Scholar
  4. 4.
    Bjorner, A., Lovász, L., Shor, W.: Chip-firing games on graphes. E.J. Combinatorics 12, 283–291 (1991)Google Scholar
  5. 5.
    Cori, R., Rossin, D.: On the sandpile group of a graph. Eur. J. Combin. 21(4)Google Scholar
  6. 6.
    Lo’pez, M., Merino, C.: Chip fring and the tutte polynomial. Annals of Combinatorics 1(3), 253–259 (1997)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  8. 8.
    Diestel, R.: Graph Theory, Electronic edn., New York (2005)Google Scholar
  9. 9.
    Dixit, S.: Self-organization of complex networks applied to wireless world systems. Wirel. Pers. Commun. 29(1-2), 63–70 (2004)CrossRefGoogle Scholar
  10. 10.
    Le, M.H., Pham, T.A., Phan, T.H.D.: On the relation between chip firing games and petri nets. In: Proceeding of IEEE-RIVF International Conference on Computing and Communication Technologies, pp. 328–335 (2009)Google Scholar
  11. 11.
    Lipton, R.J., Cardoza, E., Meyer, A.R.: Exponential space complete problems for petri nets and commutative semigroups. In: 8th Annual Symposium on Theory of Computing, pp. 50–54 (1976)Google Scholar
  12. 12.
    Goles, E., Morvan, M., Phan, H.D.: Lattice structure and convergence of a game of cards. Ann. of Combinatorics 6, 327–335 (2002)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Le, M.H., Phan, T.H.D.: Order structure and energy of conflicting chip firing game. Acta Math. Vietnam. (2008) (to appear)Google Scholar
  14. 14.
    Huang, S.-T.: Leader election in uniform rings. ACM Trans. Programming Languages Systems 15(3), 563–573 (1993)CrossRefGoogle Scholar
  15. 15.
    Huynh, D.T.: Commutative grammars: The complexity of uniform word problems. Information and Control 57(1), 21–39 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg (1975)Google Scholar
  17. 17.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM (CACM) 21(7), 558–565 (1978)zbMATHCrossRefGoogle Scholar
  18. 18.
    Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in petri nets. Theoretical Computer Science 4, 277–299 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Latapy, M., Phan, H.D.: The lattice structure of chip firing games. Physica D 115, 69–82 (2001)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Levine, L., Peres, Y.: The rotor-router shape is spherical. Math. Intelligence 27(3), 9–11 (2005)zbMATHCrossRefGoogle Scholar
  21. 21.
    Magnien, C., Phan, H.D., Vuillon, L.: Characterization of lattices induced by (extended) chip firing games. Discrete Math. Theoret. Comput. Sci. AA, 229–244 (2001)Google Scholar
  22. 22.
    Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  23. 23.
    Epstein, I.R., Pojman, J.A., Steinbock, O.: Introduction: Self-organization in nonequilibrium chemical systems. Chaos 2006 16, 037101 (2001)CrossRefGoogle Scholar
  24. 24.
    Pham, T.A., Phan, T.H.D., Tran, T.T.H.: Conflicting chip firing games on directed graphs and on treese. VNU Journal of Science. Natural Sciences and Technology 24, 103–109 (2007)Google Scholar
  25. 25.
    Huynh, D., Howell, R., Rosier, L., Yen, H.: Some complexity bounds for problems concerning finite and 2-dimensional vector addition systems with states. Theoretical Computer Science 46, 107–140 (1986)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Le Manh Ha
    • 1
  • Nguyen Anh Tam
    • 2
  • Phan Thi Ha Duong
    • 3
  1. 1.Hue University’s College of EducationHueVietnam
  2. 2.Vietnam National UniversityHanoiVietnam
  3. 3.Institute of MathematicsHanoiVietnam

Personalised recommendations