A Social Network Analysis Approach to Detecting Suspicious Online Financial Activities

  • Lei Tang
  • Geoffrey Barbier
  • Huan Liu
  • Jianping Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6007)

Abstract

Social network analysis techniques can be applied to help detect financial crimes. We discuss the relationship between detecting financial crimes and the social web, and use select case studies to illustrate the potential for applying social network analysis techniques. With the increasing use of online financing services and online financial activities, it becomes more challenging to find suspicious activities among massive numbers of normal and legal activities.

Keywords

Social Networks Social Network Analysis Crime detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, C., Wang, H. (eds.): Managing and Mining Graph Data. Springer, Heidelberg; Expected in early 2010MATHGoogle Scholar
  2. 2.
    Chapanond, A., Krishnamoorthy, M.S., Yener, B.: Graph theoretic and spectral analysis of enron email data. Comput. Math. Organ. Theory 11(3), 265–281 (2005)MATHCrossRefGoogle Scholar
  3. 3.
    Diesner, J., Frantz, T.L., Carley, K.M.: Communication networks from the enron email corpus “it’s always about the people. enron is no different”. Comput. Math. Organ. Theory 11(3), 201–228 (2005)MATHCrossRefGoogle Scholar
  4. 4.
    FinCen. The SAR activity review: the trends, tips, and issues (October 2007), http://www.fincen.gov/sarreviewissue12.pdf
  5. 5.
    FinCen. The SAR activity review - by the numbers (June 2009)Google Scholar
  6. 6.
    Jonas, J., Harper, J.: Effective counterterrorism and the limited role of predictive data mining. Policy Analysis 11 (2006)Google Scholar
  7. 7.
    Klimat, B., Yang, Y.: The enron corpus: A new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    O’Hare, P.: Facebook boaster robbed of pounds 30,000; conmen use details off net. Daily Record, p. 23 (April 2008)Google Scholar
  9. 9.
    Priebe, C., Conroy, J., Marchette, D., Park, Y.: Scan statistics on enron graphs. Computational & Mathematical Organization Theory 11(3), 229–247 (2005)MATHCrossRefGoogle Scholar
  10. 10.
    Shetty, J., Adibi, J.: Discovering important nodes through graph entropy the case of enron email database. In: LinkKDD 2005: Proceedings of the 3rd international workshop on Link discovery, pp. 74–81. ACM, New York (2005)CrossRefGoogle Scholar
  11. 11.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  12. 12.
    Xu, J., Chen, H.: Criminal network analysis and visualization. Commun. ACM 48(6), 100–107 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lei Tang
    • 1
  • Geoffrey Barbier
    • 1
  • Huan Liu
    • 1
  • Jianping Zhang
    • 2
  1. 1.Data Mining and Machine Learning LaboratoryArizona State UniversityTempe
  2. 2.The MITRE CorporationMcLean

Personalised recommendations