Assortativity Patterns in Multi-dimensional Inter-organizational Networks: A Case Study of the Humanitarian Relief Sector

  • Kang Zhao
  • Louis-Marie Ngamassi
  • John Yen
  • Carleen Maitland
  • Andrea Tapia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6007)

Abstract

We use computational tools to study assortativity patterns in multi-dimensional inter-organizational networks on the basis of different node attributes. In the case study of an inter-organizational network in the humanitarian relief sector, we consider not only macro-level topological patterns, but also assortativity on the basis of micro-level organizational attributes. Unlike assortative social networks, this inter-organizational network exhibits disassortative or random patterns on three node attributes. We believe organizations’ seek of complementarity is one of the main reasons for the special patterns. Our analysis also provides insights on how to promote collaborations among the humanitarian relief organizations.

Keywords

Assortativity multi-dimensional inter-organizational network network analysis humanitarian relief 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Annual Review of Sociology 27(1), 415–444 (2001)CrossRefGoogle Scholar
  2. 2.
    Newman, M.E.J.: Mixing patterns in networks. Physical Review E 67(2), 13 (2003)CrossRefGoogle Scholar
  3. 3.
    Powell, W.W., White, D.R., Koput, K.W., Owen-Smith, J.: Network dynamics and field evolution: The growth of interorganizational collaboration in the life sciences. The American Journal of Sociology 110(4), 1132–1205 (2005)CrossRefGoogle Scholar
  4. 4.
    Zhao, K., Yen, J., Ngamassi, L.M., Maitland, C., Tapia, A.H.: Modeling emerging coalitions in the context of inter-organizational networks: A case study of humanitarian coordination. International Journal of Intelligent Control and Systems 14(1), 97–103 (2009)Google Scholar
  5. 5.
    Efron, B.: Computers and the theory of statistics: Thinking the unthinkable. Siam Review 21(4), 460–480 (1979)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    O’Madadhain, J., Fisher, D., Nelson, T., White, S., Boey, Y.B.: The java universal network/graph framework (jung): A brief tour. In: Music-to-Knowledge North American Workshop, University of Illinois (2005)Google Scholar
  7. 7.
    Chung, S., Singh, H., Lee, K.: Complementarity, status similarity and social capital as drivers of alliance formation. Strategic Management Journal 21(1), 1–22 (2000)CrossRefGoogle Scholar
  8. 8.
    Krackhardt, D.: Predicting with networks - nonparametric multiple-regression analysis of dyadic data. Social Networks 10(4), 359–381 (1988)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kang Zhao
    • 1
  • Louis-Marie Ngamassi
    • 1
  • John Yen
    • 1
  • Carleen Maitland
    • 1
  • Andrea Tapia
    • 1
  1. 1.College of Information Sciences and TechnologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations