Advertisement

COLBERT: A Scoring Based Graphical Model for Expert Identification

  • Muhammad Aurangzeb Ahmad
  • Xin Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6007)

Abstract

In recent years a number of graphical models have been proposed for Topic discovery in various contexts and network analysis. However there is one class of document corpus, documents with ratings, where the problem of topic discovery has not been explored in much detail. In such document corpuses reviews and ratings of documents in addition to the documents themselves are also available. In this paper we address the problem of discovery of latent structures in document-review corpus which can then be used to construct a social network of experts. We present a graphical model COLBERT that automatically discovers latent topics based on the contents of the document, the review of the document and the ratings of the review.

Keywords

Expert Identification Topic Modeling COLBERT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, M., Srivastava, J.: An Ant Colony Optimization Approach to Expert Identification in Social Networks. In: First International Workshop on Social Computing, Behavioral Modeling and Prediction Pheonix, Arizona (2008)Google Scholar
  2. 2.
    Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enterprise corpora. In: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 43–50 (2006)Google Scholar
  3. 3.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Campbell, C.S., Magio, P.P., Cozzi, A., Dom, B.: Expertise Identification using email communications. In: CIKM 2003, pp. 528–531 (2003)Google Scholar
  5. 5.
    Chemudugunta, C., Smyth, P., Styevers, M.: Modeling General and Specific Aspects of Documents with a Probabilistic Topic Model. In: Proceedings Neural Information Processing Systems, NIPS (2007)Google Scholar
  6. 6.
    Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  7. 7.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Golbeck, J.: Trust and Nuanced Profile Similarity in Online Social Networks. MINDSWAP Tech Report TR-MS1291 (2007)Google Scholar
  9. 9.
    Griffiths, T., Steyvers, M.: Finding scientific topics. Proceedings of the National Academy of Sciences (2004)Google Scholar
  10. 10.
    Krulwich, B., Burkey, C.: The ContactFinder agent: Answering bulletin board questions with referrals. In: AAAI 1996 (1996)Google Scholar
  11. 11.
    Mattox, D., Maybury, M., Morey, D.: Enterprise expert and knowledge discovery. Technical report (1999)Google Scholar
  12. 12.
    McCallum, A., Corrada-Emmanuel, A., Wang, X.: Topic and Role Discovery in Social Networks. In: Proceedings International Joint Conference on Artificial Intelligence, IJCAI (2005)Google Scholar
  13. 13.
    Steyvers, M., Smyth, P., Rosen-Zvi, P., Griffiths, T.: Probabilistic Author-Topic Models for Information Discovery. In: Proceedings Knowledge Discovery and Data Mining, KDD (2004)Google Scholar
  14. 14.
    Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. 38, 321–330 (2004)Google Scholar
  15. 15.
    Newman, M.: Fast algorithms for detecting community structure. Phys. Rev. E 69, 066133 (2004)Google Scholar
  16. 16.
    Pathak, N., Delong, C., Erickson, K., Banerjee, A.: Social Topic Models for Community Extraction. In: The Second SNAKDD Workshop, August 24-27 (2008)Google Scholar
  17. 17.
    Pothen, A., Simon, H., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Schwartz, M.F., Wood, D.C.M.: Discovering shared interests using graph analysis. Commnications of the ACM 36(8), 78–89 (1993)CrossRefGoogle Scholar
  19. 19.
    Wasserman, S., Faust, K.: Social Networks Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  20. 20.
    Wang, X., Mohanty, N., McCallum, A.: Group and Topic Discovery from Relations and Their Attributes. In: Proceedings Neural Information Processing Systems, NIPS (2006)Google Scholar
  21. 21.
    Zhou, D., Ji, X., Zha, H., Lee, C.: Giles Topic Evolution and Social Interactions: How Authors Effect Research. In: CIKM 2006 (2006)Google Scholar
  22. 22.
    Li, W., McCallum, A.: Pachinko allocation: DAG-structured mixture models of topic correlations. In: Proceedings of the 23rd international conference on Machine learning, Pittsburgh, Pennsylvania, June 25-29, pp. 577–584 (2006)Google Scholar
  23. 23.
    Blei, D., McAuliffe, J.: Supervised topic models. In: Advances in Neural Information Processing Systems, vol. 21 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Muhammad Aurangzeb Ahmad
    • 1
  • Xin Zhao
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of Minnesota 

Personalised recommendations