Advertisement

Thin-Film Metamaterials Called Sculptured Thin Films

  • Akhlesh Lakhtakia
  • Joseph B. GeddesIII
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Morphology and performance are conjointed attributes of metamaterials, of which sculptured thin films (STFs) are examples. STFs are assemblies of nanowires that can be fabricated from many different materials, typically via physical vapor deposition onto rotating substrates. The curvilinear-nanowire morphology of STFs is determined by the substrate motions during fabrication. The optical properties, especially, can be tailored by varying the morphology of STFs. In many cases prototype devices have been fabricated for various optical, thermal, chemical, and biological applications.

Keywords

Physical Vapor Deposition Bulk Film Local Homogenization Subwavelength Scale Deposit Titanium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

J. B. Geddes III gratefully acknowledges support of a Beckman Postdoctoral Fellowship. A. Lakhtakia thanks the Binder Endowment at Penn State for financial support of his research.

Referneces

  1. 1.
    A. Lakhtakia, T.G. Mackay, Meet the metamaterials. OSA Opt. Photon. News, 18(1), 32–37 (2007)CrossRefGoogle Scholar
  2. 2.
    T.G. Mackay, A. Lakhtakia, Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials. Phys. Rev. B, 79, 235121, (2009)CrossRefGoogle Scholar
  3. 3.
    R. Walser, Metamaterials: an introduction, in Introduction to Complex Mediums for Optics and Electromagnetics ed. by W.S. Weiglhofer, A. Lakhtakia, (SPIE Press, Bellingham, WA, USA, 2003) pp. 295–316CrossRefGoogle Scholar
  4. 4.
    A. Lakhtakia, R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics. (SPIE Press, Bellingham, WA, USA, 2005)CrossRefGoogle Scholar
  5. 5.
    N.O. Young, J. Kowal, Optically active fluorite films. Nature, 183 104–105 (1959)CrossRefGoogle Scholar
  6. 6.
    R. Messier, The nano-world of thin films. J. Nanophoton., 2 021995 (2008)CrossRefGoogle Scholar
  7. 7.
    J.M. Nieuwenhuizen, H.B. Haanstra, Microfractography of thin films. Phillips Tech. Rev., 27 87–91 (1966)Google Scholar
  8. 8.
    R. Messier, A.P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol. A, 2, 500–503 (1984)CrossRefGoogle Scholar
  9. 9.
    T. Motohiro, Y. Taga, Thin film retardation plate by oblique deposition. Appl. Opt., 28, 2466–2482 (1989)CrossRefGoogle Scholar
  10. 10.
    A. Lakhtakia, R. Messier, The key to a thin film HBM: The Motohiro–Taga interface. in Proceedings of Chiral ‘94; 3rd International Workshop on Chiral, Bi-isotropic and Bi-anisotropic Media, ed. by F. Mariotte, J.-P. Parneix (Périgueux, France, 1994) pp 125–130Google Scholar
  11. 11.
    K. Robbie, M.J. Brett, A. Lakhtakia, First thin-film realization of a helicoidal bianisotropic medium. J. Vac. Sci. Technol. A, 13, 2991–2993, (1995)CrossRefGoogle Scholar
  12. 12.
    V.C. Venugopal, A. Lakhtakia, Sculptured thin films: conception, optical properties and applications, in Electromagnetic Fields in Unconventional Materials and Structures, ed. by O.N. Singh and A. Lakhtakia (Wiley, New York, NY, USA, 2000) pp 151–216Google Scholar
  13. 13.
    A. Lakhtakia, R. Messier, The past, the present, and the future of sculptured thin films, in Introduction to Complex Mediums for Optics and Electromagnetics, ed. by W.S. Weiglhofer, A. Lakhtakia (SPIE Press, Bellingham, WA, USA, 2003) pp 447–478CrossRefGoogle Scholar
  14. 14.
    J.B. Geddes III, Towards shaping of pulsed plane waves in the time domain via chiral sculptured thin films, Frontiers in Optical Technology: Materials and Devices, ed. by P.K. Choudhury, O.N. Singh, (Nova Science, Hauppauge, NY, USA, 2006) pp 1–21Google Scholar
  15. 15.
    J.A. Polo, Sculptured thin films, in Micromanufacturing and Nanotechnology, ed. by N.P. Mahalik, (Springer, Berlin, Germany, 2006) pp 357–381CrossRefGoogle Scholar
  16. 16.
    F. Wang, in Optics of slanted chiral STFs, Frontiers in Surface Nanophotonics: Principles and Applications, ed. by D.L. Andrews Z. Gaburro, (Springer, New York, NY, USA, 2007) pp 129–167CrossRefGoogle Scholar
  17. 17.
    R. Messier, V.C. Venugopal, P.D. Sunal, Origin and evolution of sculptured thin films. J. Vac. Sci. Technol. A, 18, 1538–1545 (2000)CrossRefGoogle Scholar
  18. 18.
    M. Suzuki, Y. Taga, Integrated sculptured thin films. Jap. J. Appl. Phys. Part 2, 40 L358–L359 (2001)CrossRefGoogle Scholar
  19. 19.
    Y.J. Park, K.M.A. Sobahan, C.K. Hwangbo, Wideband circular polarization reflector fabricated by glancing angle deposition. Opt. Exp., 16, 5186–5192 (2008)CrossRefGoogle Scholar
  20. 20.
    I.J. Hodgkinson, Q.H. Wu, Serial bideposition of anisotropic thin films with enhanced linear birefringence. Appl. Opt. 38, 3621–3625 (1999)CrossRefGoogle Scholar
  21. 21.
    I.J. Hodgkinson, Q.h. Wu, B. Knight, A. Lakhtakia, K. Robbie, Vacuum deposition of chiral sculptured thin films with high optical activity. Appl. Opt., 39, 642–649 (2000)CrossRefGoogle Scholar
  22. 22.
    A. Lakhtakia, M.C. Demirel, M.W. Horn, J. Xu, Six emerging directions in sculptured-thin-film research. Adv. Solid State Phys. 46, 295–307 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Pursel, M.W. Horn, M.C. Demirel, A. Lakhtakia, Growth of sculptured polymer submicronwire assemblies by vapor deposition. Polymer, 46, 9544–9548 (2005)CrossRefGoogle Scholar
  24. 24.
    M.C. Demirel, S. Boduroglu, M. Cetinkaya, A. Lakhtakia. Spatially organized free–standing poly(p-xylylene) nanowires fabricated by vapor deposition. Langmuir, 23, 5861–5863 (2007)CrossRefGoogle Scholar
  25. 25.
    H. Tan, O.K. Ezekoye, J. van der Schalie, M.W. Horn, A. Lakhtakia, J. Xu, W.D. Burgos, Biological reduction of nanoengineered iron(III) oxide sculptured thin films. Environ. Sci. Technol. 40, 5490–5495 (2006)CrossRefGoogle Scholar
  26. 26.
    K. Robbie, M.J. Brett, A. Lakhtakia, Chiral sculptured thin films. Nature, 384, 616 (1996)CrossRefGoogle Scholar
  27. 27.
    M.W. Horn, M.D. Pickett, R. Messier, A. Lakhtakia, Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures. Nanotechnology, 15, 303–310 (2004)CrossRefGoogle Scholar
  28. 28.
    M.W. Horn, M.D. Pickett, R. Messier, A. Lakhtakia, Selective growth of sculptured nanowires on microlithographic lattices. J. Vac. Sci. Technol. B, 22, 3426–3430 (2004)CrossRefGoogle Scholar
  29. 29.
    I. Hodgkinson, Q.h. Wu, J. Hazel, Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl. Opt. 37, 2653–2659 (1998)CrossRefGoogle Scholar
  30. 30.
    A.C. van Popta, J.C. Sit, M.J. Brett, Optical properties of porous helical thin films. Appl. Opt. 43, 3632–3639 (2004)CrossRefGoogle Scholar
  31. 31.
    K.D. Harris, D. Vick, E.J. Gonzalez, T. Smy, K. Robbie, M.J. Brett, Porous thin films for thermal barrier coatings. Surf. Coat. Technol. 138, 185–191 (2001)CrossRefGoogle Scholar
  32. 32.
    Y. Inoue, A. Yamaguchi, T. Fujihara, J. Yamazaki, O. Takai, Biomimetic improvement of electrochromic properties of indium nitride. J. Electrochem. Soc. 154, J212–J216 (2007)CrossRefGoogle Scholar
  33. 33.
    A.L. Elias, K.D. Harris, M.J. Brett, Fabrication of helically perforated gold, nickel, and polystyrene thin films. J. MEMS, 13 808–813 (2004)CrossRefGoogle Scholar
  34. 34.
    J.N. Broughton, M.J. Brett, Electrochemical capacitance in manganese thin films with chevron microstructure. Electrochem. Solid-State Lett. 5, A279–A282 (2002)CrossRefGoogle Scholar
  35. 35.
    G.K. Kiema, M.J. Brett, Electrochemical characterization of carbon films with porous microstructures. J. Electrochem. Soc. 150 E342–E347 (2003)CrossRefGoogle Scholar
  36. 36.
    E. Schubert, J. Fahlteich, B. Rauschenbach, M. Schubert, M. Lorenz, M. Grundmann, G. Wagner, Recrystallization behavior in chiral sculptured thin films from silicon. J. Appl. Phys. 100, 016107 (2006)CrossRefGoogle Scholar
  37. 37.
    D.-X. Ye, T. Karabacak, R.C. Picu, G.-C. Wang, T.-M. Lu, Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation. Nanotechnology, 16, 1717–1723 (2005)CrossRefGoogle Scholar
  38. 38.
    D.-X. Ye, Z.-P. Yang, A.S.P. Chang, J. Bur, S.Y. Lin, T.-M. Lu, R.Z. Wang, S. John. Experimental realization of a well-controlled 3D silicon spiral photonic crystal. J. Phys. D: Appl. Phys. 40, 2624–2628 (2007)CrossRefGoogle Scholar
  39. 39.
    R.J. Martín-Palma, J.V. Ryan, C.G. Pantano, Surface microstructure of gesbse chalcogenide thin films grown at oblique angle. J. Appl. Phys. 101, 083513 (2007)CrossRefGoogle Scholar
  40. 40.
    R.J. Martín-Palma, J.V. Ryan, C.G. Pantano, Spectral behavior of the optical constants in the visible/near infrared of gesbse chalcogenide thin films grown at glancing angle. J. Vac. Sci. Technol. A, 25, 587–591 (2007)CrossRefGoogle Scholar
  41. 41.
    R.J. Martín-Palma, A. Redondo-Cubero, R. Gago, J.V. Ryan, C.G. Pantano. Rutherford backscattering spectrometry characterization of nanoporous chalcogenide thin films grown at oblique angles. J. Anal. At. Spectrom. 23, 981–984 (2008)CrossRefGoogle Scholar
  42. 42.
    P.C.P. Hrudey, K.L. Westra, M.J. Brett, Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing–angle deposition. Adv. Mater. 18, 224–228 (2006)CrossRefGoogle Scholar
  43. 43.
    M. Malac, R.F. Egerton, M.J. Brett, B. Dick, Fabrication of submicrometer regular arrays of pillars and helices. J. Vac. Sci. Technol. B, 17, 2671–2674 (1999)CrossRefGoogle Scholar
  44. 44.
    B. Dick, M.J. Brett, T. Smy, Controlled growth of periodic pillars by glancing angle deposition. J. Vac. Sci. Technol. B, 21, 23–28 (2003)CrossRefGoogle Scholar
  45. 45.
    M.O. Jensen, M.J. Brett Periodically structured glancing angle deposition thin films. IEEE Trans. Nanotechnol. 4, 269–277 (2005)CrossRefGoogle Scholar
  46. 46.
    J.A. Sherwin, A. Lakhtakia, Nominal model for structure–property relations of chiral dielectric sculptured thin films. Math. Comput. Modelling, 34, 1499–1514 (2001) Corrections: 35 1355–1363 (2002)CrossRefGoogle Scholar
  47. 47.
    J.A. Sherwin, A. Lakhtakia, Nominal model for the optical response of a chiral sculptured thin film infiltrated by an isotropic chiral fluid. Opt. Commun. 214, 231–245 (2002)CrossRefGoogle Scholar
  48. 48.
    J.A. Sherwin, A. Lakhtakia, Nominal model for the optical response of a chiral sculptured thin film infiltrated by an isotropic chiral fluid-oblique incidence. Opt. Commun. 222 305–329 (2003)CrossRefGoogle Scholar
  49. 49.
    V.C. Venugopal, A. Lakhtakia, R. Messier, J.-P. Kucera, Low–permittivity materials using sculptured thin film technology. J. Vac. Sci. Technol. B, 18, 32–36 (2000)CrossRefGoogle Scholar
  50. 50.
    F. Zhang, J. Xu, A. Lakhtakia, S.M. Pursel, M.W. Horn, A. Wang, Circularly polarized emission from colloidal nanocrystal quantum dots confined in cavities formed by chiral mirrors. Appl. Phys. Lett. 91, 023102 (2007)CrossRefGoogle Scholar
  51. 51.
    F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S.M. Pursel, M.W. Horn, Circular polarization emission from an external cavity diode laser. Appl. Phys. Lett., 92 111109, 2008.CrossRefGoogle Scholar
  52. 52.
    F. Wang, A. Lakhtakia, R. Messier, Towards piezoelectrically tunable chiral sculptured thin film lasers. Sens. Actuat. A: Phys., 102, 31–35 (2002)CrossRefGoogle Scholar
  53. 53.
    F. Wang, A. Lakhtakia, R. Messier, On piezoelectric control of the optical response of sculptured thin films. J. Mod. Opt. 50, 239–249 (2003)Google Scholar
  54. 54.
    K. Robbie, D.J. Broer, M.J. Brett, Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature, 399, 764–766 (1999)CrossRefGoogle Scholar
  55. 55.
    J.C. Sit, D.J. Broer, M.J. Brett, Alignment and switching of nematic liquid crystals embedded in porous chiral thin films. Liq. Cryst. 27, 387–391 (2000)CrossRefGoogle Scholar
  56. 56.
    A. Lakhtakia, J.A. Reyes, Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material-Part 1: Axial dc electric field. Optik, 119, 253–268 (2008)CrossRefGoogle Scholar
  57. 57.
    A. Lakhtakia, J.A. Reyes, Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material-Part 2: Arbitrary dc electric field. Optik, 119, 269–275, 2008.CrossRefGoogle Scholar
  58. 58.
    J.A. Reyes, A. Lakhtakia. Electrically controlled optical bandgap in a structurally chiral material. Opt. Commun. 259, 164–173 (2006)CrossRefGoogle Scholar
  59. 59.
    A. Shalabaney, A. Lakhtakia, I. Abdulhalim, A. Lahav, C. Patzig, I. Hazek, A. Karabchevky, B. Rauschenbach, F. Zhang, J. Xu, Surface plasmon resonance from metallic columnar thin films. Photon. Nanostruct. Fund. Appl, 7, 176–185, 2009CrossRefGoogle Scholar
  60. 60.
    M.A. Motyka, A. Lakhtakia, Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. J. Nanophoton. 2, 021910 (2008)CrossRefGoogle Scholar
  61. 61.
    M.A. Motyka, A. Lakhtakia, Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence. J. Nanophoton. 3, 033502 (2008)CrossRefGoogle Scholar
  62. 62.
    J.A. Polo, Jr., A. Lakhtakia, On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film. Proc. R. Soc. Lond. A, 465, 87–107 (2009)CrossRefGoogle Scholar
  63. 63.
    J.A. Polo, Jr., A. Lakhtakia, Energy flux in a surface-plasmon-polariton wave bound to the planar interface of a metal and a structurally chiral material. J. Opt. Soc. Am. A, 26 1696–1703 (2009)CrossRefGoogle Scholar
  64. 64.
    A. Lakhtakia, Y.-J. Jen, C.-F. Lin. Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence. J. Nanophoton. 3, 033506 (2009)CrossRefGoogle Scholar
  65. 65.
    M.W. Seto, K. Robbie, D. Vick, M.J. Brett, L. Kuhn, Mechanical response of thin films with helical microstructures. J. Vac. Sci. Technol. B, 17, 2172–2177 (1999)CrossRefGoogle Scholar
  66. 66.
    S.M. Pursel, M.W. Horn, Prospects for nanowire sculptured-thin-film devices. J. Vac. Sci. Technol. B, 25 2611–2615 (2007)CrossRefGoogle Scholar
  67. 67.
    J.J. Steele, G.A. Fitzpatrick, M.J. Brett, Capacitive humidity sensor with high sensitivity and subsecond response times. IEEE Sensors J., 7 955–956 (2007)CrossRefGoogle Scholar
  68. 68.
    I.J. Hodgkinson, Q.h. Wu, K.M. McGrath, Moisture adsorption effects in biaxial and chiral optical thin film coatings. Proc. SPIE, 3790, 184–194 (1999)CrossRefGoogle Scholar
  69. 69.
    J.J. Steele, A.C. van Popta, M.M. Hawkeye, J.C. Sit, M.J. Brett, Nanostructured gradient index optical filter for high-speed humidity sensing. Sens. Actuat. B: Chem. 120 213–219 (2006)CrossRefGoogle Scholar
  70. 70.
    E. Ertekin, A. Lakhtakia, Sculptured thin film šolc filters for optical sensing of gas concentration. Eur. Phys. J. Appl. Phys. 5, 45–50 (1999)CrossRefGoogle Scholar
  71. 71.
    A. Lakhtakia, Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions. Optik, 112 145–148, 2001. Corrections: 112:544, 2001.CrossRefGoogle Scholar
  72. 72.
    A. Lakhtakia, M.W. McCall, J.A. Sherwin, Q.H. Wu, I.J. Hodgkinson. Sculptured-thin-film spectral holes for optical sensing of fluids. Opt. Commun. 194, 33–46 (2001)CrossRefGoogle Scholar
  73. 73.
    S. Tsoi, E. Fok, J.C. Sit, J.G.C. Veinot, Superhydrophobic, high surface area, 3-D SiO2 nanostructures through siloxane-based surface functionalization. Langmuir, 20, 10771–10774 (2004)CrossRefGoogle Scholar
  74. 74.
    N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub, Wettability switching techniques for superhydrophobic surfaces. Nanoscale Res. Lett. 2, 577–597 (2007)CrossRefGoogle Scholar
  75. 75.
    Y. Zhou, X. Song, M. Yu, B. Wang, H. Yan, Superhydrophobic surfaces prepared by plasma fluorination of lotus-leaf-like amorphous carbon films. Surf. Rev. Lett., 13, 117–122 (2006)CrossRefGoogle Scholar
  76. 76.
    M.C. Demirel, E. So, T.M. Ritty, S.H. Naidu, A. Lakhtakia, Fibroblast cell attachment and growth on nanoengineered sculptured thin films. J. Biomed. Mater. Res., Part B: Appl. Biomater. 81, 219–223 (2006)Google Scholar
  77. 77.
    A. Lakhtakia, Elastodynamic wave propagation in a continuously twisted structurally chiral medium along the axis of spirality. J. Acoust. Soc. Am., 95, 597–600 (1994) Corrections: 95, 3669 (1994)CrossRefGoogle Scholar
  78. 78.
    A. Lakhtakia, K. Robbie, M.J. Brett, Spectral Green’s function for wave excitation and propagation in a piezoelectric, continuously twisted, structurally chiral medium. J. Acoust. Soc. Am. 101, 2052–2059 (1997)CrossRefGoogle Scholar
  79. 79.
    A. Lakhtakia, M.W. Meredith, Shear axial modes in a PCTSCM. Part IV: Bandstop and notch filters. Sens. Actuat. A: Phys., 73, 193–200 (1999)CrossRefGoogle Scholar
  80. 80.
    A. Lakhtakia, Shear axial modes in a PCTSCM. Part VI: Simpler transmission spectral holes. Sens. Actuat. A: Phys., 87, 78–80 (2000)CrossRefGoogle Scholar
  81. 81.
    R.J. Carey, A. Lakhtakia, Shear axial modes in a PCTSCM. Part VIII: Spectral holes with dissimilar materials but without phase defects. Sens. Actuat. A: Phys., 126, 382–385 (2006)CrossRefGoogle Scholar
  82. 82.
    A. Lakhtakia. Axial loading of a chiral sculptured thin film. Model. Simul. Mater. Sci. Eng. 8, 677–686 (2000)CrossRefGoogle Scholar
  83. 83.
    A. Lakhtakia, Perturbational solution for quasi-axial propagation in a piezoelectric, continuously twisted, structurally chiral medium. Appl. Acoust., 62, 1019–1023 (2001)CrossRefGoogle Scholar
  84. 84.
    A. Lakhtakia, Microscopic model for elastostatic and elastodynamic excitation of chiral sculptured thin films. J. Compos. Mater. 36, 1277–1298 (2002)CrossRefGoogle Scholar

Copyright information

© Springer –Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Engineering Science and MechanicsPennsylvania State UniversityUniversity ParkUSA
  2. 2.Beckman Institute, University of Illinois at Urbana–ChampaignUrbanaUSA

Personalised recommendations