Interval PERT and Its Fuzzy Extension

  • Didier Dubois
  • Jérôme Fortin
  • Paweł Zieliński
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 252)

Introduction

In project or production management, an activity network is classically defined by a set of tasks (activities) and a set of precedence constraints expressing which tasks cannot start before others are completed. When there are no resource constraints, we can display the network as a directed acyclic graph. With such a network the goal is to find critical activities, and to determine optimal starting times of activities, so as to minimize the makespan. The first step is to determine the earliest ending time of the project. This problem was posed in the fifties, in the framework of project management, by Malcolm et al. [32] and the basic underlying graph-theoretic approach, called Project Evaluation and Review Technique, is now popularized under the acronym PERT. The determination of critical activities is carried out via the so-called critical path method (Kelley [29]). The usual assumption in scheduling is that the duration of each task is precisely known, so that solving the PERT problem is rather simple. However, in project management, the durations of tasks are seldom precisely known in advance, at the time when the plan of the project is designed. Detailed specifications of the methods and resources involved for the realization of activities are often not available when the tentative plan is made up. This difficulty has been noticed very early by the authors that introduced the PERT approach. They proposed to model the duration of tasks by probability distributions, and tried to estimate the mean value and standard deviation of earliest starting times of activities. Since then, there has been an extensive literature on probabilistic PERT (see Adlakha and Kulkarni [1] and Elmaghraby [18] for a bibliography and recent views). Even if the task duration times are independent random variables, it is admitted that the problem of finding the distribution of the ending time of a project is intractable, due to the dependencies induced by the topology of the network [25]. Another difficulty, not always pointed out, is the possible lack of statistical data validating the choice of activity duration distributions. Even if statistical data are available, they may be partially inadequate because each project takes place in a specific environment, and is not the exact replica of past projects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adlakha, V.G., Kulkarni, V.G.: A classified bibliography of research on stochastic PERT networks: 1966- 1987. INFOR 27, 272–296 (1989)MATHGoogle Scholar
  2. 2.
    Buckley, J.J.: Fuzzy PERT. In: Evans, G., Karwowski, W., Wilhelm, M. (eds.) Applications of Fuzzy Set Methodologies in Industrial Engineering, pp. 103–114. Elsevier, Amsterdam (1989)Google Scholar
  3. 3.
    Chanas, S., Dubois, D., Zieliński, P.: On the sure criticality of tasks in activity networks with imprecise durations. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics 34, 393–407 (2002)CrossRefGoogle Scholar
  4. 4.
    Chanas, S., Kamburowski, J.: The use of fuzzy variables in PERT. Fuzzy Set Systems 5, 1–19 (1981)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chanas, S., Kuchta, D.: Discrete fuzzy optimization. In: Słowiński, R. (ed.) Fuzzy Sets in Decision Analysis, Operation Research and Statistics. The Handbooks of Fuzzy Sets Series, pp. 249–280. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  6. 6.
    Chanas, S., Zieliński, P.: The computational complexity of the criticality problems in a network with interval activity times. European Journal of Operational Research 136, 541–550 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chanas, S., Zieliński, P.: On the hardness of evaluating criticality of activities in planar network with duration intervals. Operation Research Letters 31, 53–59 (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Dubois, D.: Modèles mathématiques de l’imprécis et de l’incertain en vue d’applications aux techniques d’aide à la décision. Thèse d’état de l’Université Scientifique et Médicale de Grenoble et de l’Institut National Politechnique de Grenoble (1983)Google Scholar
  9. 9.
    Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research 147, 231–252 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dubois, D., Fargier, H., Fortin, J.: A generalized vertex method for computing with fuzzy intervals. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 541–546 (2004)Google Scholar
  11. 11.
    Dubois, D., Fargier, H., Fortin, J.: Computational methods for determining the latest starting times and floats of tasks in interval-valued activity networks. Journal of Intelligent Manufacturing 16, 407–422 (2005)CrossRefGoogle Scholar
  12. 12.
    Dubois, D., Fargier, H., Galvagnon, V.: On latest starting times and floats in activity networks with ill-known durations. European Journal of Operational Research 147, 266–280 (2003)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dubois, D., Prade, H.: Algorithmes de plus courts chemins pour traiter des donnees floues. RAIRO-Recherche Opérationnelle/Operations Research 12, 212–227 (1978)Google Scholar
  14. 14.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)MATHGoogle Scholar
  15. 15.
    Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing of uncertainty. Plenum Press, New York (1988)MATHGoogle Scholar
  16. 16.
    Dubois, D., Prade, H.: When upper probabilities are possibility measures. Fuzzy Sets and Systems 49, 65–74 (1992)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft Computing - A Fusion of Foundations, Methodologies and Applications 12, 165–175 (2008)MATHGoogle Scholar
  18. 18.
    Elmaghraby, S.E.: On criticality and sensitivity in activity networks. European Journal of Operational Research 127, 220–238 (2000)MATHCrossRefGoogle Scholar
  19. 19.
    Fargier, H., Galvagnon, V., Dubois, D.: Fuzzy PERT in series-parallel graphs. In: 9th IEEE International Conference on Fuzzy Systems, San Antonio, TX, pp. 717–722 (2000)Google Scholar
  20. 20.
    Fortin, J., Dubois, D.: Solving Fuzzy PERT using gradual real numbers. In: Penserini, L., Peppas, P., Perini, A. (eds.) Starting AI Researcher’s Symposium (STAIRS), Riva del Garda, Italy. Frontiers in Artificial Intelligence and Applications, vol. 142, pp. 196–207. IOS Press, Amsterdam (2006), http://www.iospress.nl/ Google Scholar
  21. 21.
    Fortin, J., Dubois, D., Fargier, H.: Gradual numbers and their application to fuzzy interval analysis. IEEE Transactions on Fuzzy Systems 16, 388–402 (2008)CrossRefGoogle Scholar
  22. 22.
    Fortin, J., Zieliński, P., Dubois, D., Fargier, H.: Interval analysis in scheduling. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 226–240. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Gazdik, I.: Fuzzy network planning. IEEE Transactions on Reliability 32, 304–313 (1983)MATHCrossRefGoogle Scholar
  24. 24.
    Guiffrida, A.L., Nagi, R.: Fuzzy set theory applications in production management research: A literature survey. Journal of Intelligent Manufacturing 9, 39–56 (1998)CrossRefGoogle Scholar
  25. 25.
    Hagstrom, J.N.: Computational complexity of pert problems. Networks 18, 139–147 (1988)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Hapke, M., Jaszkiewicz, A., Słowiński, R.: Fuzzy project scheduling system for software development. Fuzzy Sets and Systems 67, 101–107 (1994)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Hapke, M., Słowiński, R.: Fuzzy priority heuristics for project scheduling. Fuzzy Sets and Systems 86, 291–299 (1996)CrossRefGoogle Scholar
  28. 28.
    Kaufmann, A., Gupta, M.M.: Fuzzy Mathematical Models in Engineering and Management Science. North-Holland, Amsterdam (1991)Google Scholar
  29. 29.
    Kelley, J.E.: Critical path planning and scheduling - mathematical basis. Operations Research 9, 296–320 (1961)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Kerre, E., Steyaert, H., Parys, F.V., Baekeland, R.: Implementation of piecewise linear fuzzy quantities. International Journal of Intelligent Systems 10, 1049–1059 (1995)CrossRefGoogle Scholar
  31. 31.
    Loostma, F.A.: Fuzzy logic for planning and decision-making. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  32. 32.
    Malcolm, D.G., Roseboom, J.H., Clark, C.E., Fazar, W.: Application of a Technique for Research and Development Program Evaluation. Operations Research 7, 646–669 (1959)CrossRefGoogle Scholar
  33. 33.
    McCahon, C.S.: Using PERT as an Approximation of Fuzzy Project-Network Analysis. IEEE Transactions on Engineering Management 40, 146–153 (1993)CrossRefGoogle Scholar
  34. 34.
    McCahon, C.S., Lee Stanley, E.: Project network analysis with fuzzy activity times. Computers and Mathematics with Applications 15, 829–838 (1988)MATHCrossRefGoogle Scholar
  35. 35.
    Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)MATHGoogle Scholar
  36. 36.
    Nasution, S.H.: Fuzzy critical path method. IEEE Transactions on Systems, Man, and Cybernetics 24, 48–57 (1994)CrossRefGoogle Scholar
  37. 37.
    Prade, H.: Using fuzzy sets theory in a scheduling problem: a case study. Fuzzy Sets and Systems 2, 153–165 (1979)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Rommelfanger, H.: Network analysis and information flow in fuzzy environment. Fuzzy Sets and Systems 67, 119–128 (1994)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Słowiński, R., Hapke, M. (eds.): Scheduling under Fuzziness. Physica-Verlag, A Springer-Verlag Co., Heidelberg (1999)Google Scholar
  40. 40.
    Turksen, I.B., Zarandi, M.H.F.: Production Planning and Scheduling: Fuzzy and Crisp Approaches. In: Zimmerman, H.J. (ed.) Practical Applications of Fuzzy Technology. The Handbooks of Fuzzy Sets Series, pp. 479–529. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  41. 41.
    Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM Journal on Computing 11, 298–313 (1982)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Werners, B., Weber, R.: Decision and Planning in Research and Development. In: Zimmerman, H.J. (ed.) Practical Applications of Fuzzy Technology. The Handbooks of Fuzzy Sets Series, pp. 445–478. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  43. 43.
    Zieliński, P.: On computing the latest starting times and floats of activities in a network with imprecise durations. Fuzzy Sets and Systems 150, 53–76 (2005)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Zieliński, P.: Efficient Computation of Project Characteristics in a Series-Parallel Activity Network with Interval Durations. In: Della Riccia, G., Dubois, D., Kruse, R., Lenz, H.J. (eds.) Decision Theory and Multi-Agent Planning. CISM Courses and Lectures, vol. 482, pp. 111–130. Springer, Wien, New York (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Didier Dubois
    • 1
  • Jérôme Fortin
    • 2
  • Paweł Zieliński
    • 3
  1. 1.Université Paul SabatierToulouse Cedex 4France
  2. 2.LIRMMUniversité Montpellier 2 and CNRSMontpellier Cedex 5France
  3. 3.Institute of Mathematics and Computer ScienceWrocław University of TechnologyWrocławPoland

Personalised recommendations