Incremental Pattern-Based Coinduction for Process Algebra and Its Isabelle Formalization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6014)


We present a coinductive proof system for bisimilarity in transition systems specifiable in the de Simone SOS format. Our coinduction is incremental, in that it allows building incrementally an a priori unknown bisimulation, and pattern-based, in that it works on equalities of process patterns (i.e., universally quantified equations of process terms containing process variables), thus taking advantage of equational reasoning in a “circular” manner, inside coinductive proof loops. The proof system has been formalized and proved sound in Isabelle/HOL.


Proof System Process Algebra Open Term Proof Tree Closed Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    The Coq proof assistant,
  3. 3.
  4. 4.
    Aceto, L., Cimini, M., Ingolfsdottir, A.: A bisimulation-based method for proving the validity of equations in GSOS languages. To appear in Electr. Proc. Theor. Comput. Sci.Google Scholar
  5. 5.
    Bartels, F.: Generalised coinduction. Math. Struct. Comp. Sci. 13(2), 321–348 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Bruni, R., de Frutos-Escrig, D., Martí-Oliet, N., Montanari, U.: Bisimilarity congruences for open terms and term graphs via Tile Logic. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 259–274. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Clavel, M., Durán, F.J., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: The Maude system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 240–243. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Dam, M., Gurov, D.: μ-calculus with explicit points and approximations. J. Log. Comput. 12(2), 255–269 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    de Simone, R.: Higher-level synchronizing devices in MEIJE-SCCS. Theor. Comput. Sci. 37, 245–267 (1985)zbMATHCrossRefGoogle Scholar
  12. 12.
    Doumenc, G., Madelaine, E., de Simone, R.: Proving process calculi translations in ECRINS: The pureLOTOS → MEIJE example. Technical Report RR1192, INRIA (1990),
  13. 13.
    Giménez, E.: An application of co-inductive types in Coq: Verification of the alternating bit protocol. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 135–152. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Goguen, J.A., Lin, K., Roşu, G.: Circular coinductive rewriting. In: ASE 2000, pp. 123–132 (2000)Google Scholar
  15. 15.
    Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as a congruence. Inf. Comput. 100(2), 202–260 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hausmann, D., Mossakowski, T., Schröder, L.: Iterative circular coinduction for coCASL in Isabelle/HOL. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 341–356. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Hennessy, M., Lin, H.: Proof systems for message-passing process algebras. Formal Asp. Comput. 8(4), 379–407 (1996)zbMATHCrossRefGoogle Scholar
  18. 18.
    Inverardi, P., Priami, C.: Automatic verification of distributed systems: The process algebra approach. Formal Methods in System Design 8(1), 7–38 (1996)CrossRefGoogle Scholar
  19. 19.
    Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: A behavioral verification tool based on circular coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Lucanu, D., Roşu, G.: CIRC: A circular coinductive prover. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 372–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Madelaine, E.: Verification tools from the CONCUR project,
  22. 22.
    Melham, T.F.: A mechanized theory of the pi-calculus in HOL. Nord. J. Comput. 1(1), 50–76 (1994)MathSciNetGoogle Scholar
  23. 23.
    Milner, R.: A complete inference system for a class of regular behaviours. J. Comput. Syst. Sci. 28(3), 439–466 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  25. 25.
    Monroy, R., Bundy, A., Green, I.: On process equivalence = equation solving in ccs. J. Autom. Reasoning 43(1), 53–80 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years after. Theor. Comput. Sci. 373(3), 238–272 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Popescu, A.: Weak bisimilarity coalgebraically. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 157–172. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Popescu, A., Gunter, E.L.: Incremental pattern-based coinduction for process algebra and its Isabelle formalization. Technical Report, University of Illinosis,
  29. 29.
    Rensink, A.: Bisimilarity of open terms. Inf. Comput. 156(1-2), 345–385 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Röckl, C., Hirschkoff, D.: A fully adequate shallow embedding of the π-calculus in Isabelle/HOL with mechanized syntax analysis. J. Funct. Program. 13(2) (2003)Google Scholar
  31. 31.
    Roşu, G., Lucanu, D.: Circular coinduction: A proof theoretical foundation. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–144. Springer, Heidelberg (2009)Google Scholar
  32. 32.
    Rutten, J.J.M.M.: Processes as terms: Non-well-founded models for bisimulation. Math. Struct. Comp. Sci. 2(3), 257–275 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Rutten, J.J.M.M.: Elements of stream calculus (an extensive exercise in coinduction). Electr. Notes Theor. Comput. Sci., 45 (2001)Google Scholar
  34. 34.
    Sangiorgi, D.: On the bisimulation proof method. Math. Struct. Comp. Sci. 8(5), 447–479 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sangiorgi, D., Walker, D.: The π-calculus. A theory of mobile processes, Cambridge (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.University of Illinois at Urbana-Champaign 

Personalised recommendations