Incremental Pattern-Based Coinduction for Process Algebra and Its Isabelle Formalization
Conference paper
- 8 Citations
- 454 Downloads
Abstract
We present a coinductive proof system for bisimilarity in transition systems specifiable in the de Simone SOS format. Our coinduction is incremental, in that it allows building incrementally an a priori unknown bisimulation, and pattern-based, in that it works on equalities of process patterns (i.e., universally quantified equations of process terms containing process variables), thus taking advantage of equational reasoning in a “circular” manner, inside coinductive proof loops. The proof system has been formalized and proved sound in Isabelle/HOL.
Keywords
Proof System Process Algebra Open Term Proof Tree Closed Term
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.
- 2.The Coq proof assistant, http://coq.inria.fr
- 3.
- 4.Aceto, L., Cimini, M., Ingolfsdottir, A.: A bisimulation-based method for proving the validity of equations in GSOS languages. To appear in Electr. Proc. Theor. Comput. Sci.Google Scholar
- 5.Bartels, F.: Generalised coinduction. Math. Struct. Comp. Sci. 13(2), 321–348 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
- 7.Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 8.Bruni, R., de Frutos-Escrig, D., Martí-Oliet, N., Montanari, U.: Bisimilarity congruences for open terms and term graphs via Tile Logic. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 259–274. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 9.Clavel, M., Durán, F.J., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: The Maude system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 240–243. Springer, Heidelberg (1999)Google Scholar
- 10.Dam, M., Gurov, D.: μ-calculus with explicit points and approximations. J. Log. Comput. 12(2), 255–269 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
- 11.de Simone, R.: Higher-level synchronizing devices in MEIJE-SCCS. Theor. Comput. Sci. 37, 245–267 (1985)zbMATHCrossRefGoogle Scholar
- 12.Doumenc, G., Madelaine, E., de Simone, R.: Proving process calculi translations in ECRINS: The pureLOTOS → MEIJE example. Technical Report RR1192, INRIA (1990), http://hal.archives-ouvertes.fr/inria-00075367/en/
- 13.Giménez, E.: An application of co-inductive types in Coq: Verification of the alternating bit protocol. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 135–152. Springer, Heidelberg (1996)Google Scholar
- 14.Goguen, J.A., Lin, K., Roşu, G.: Circular coinductive rewriting. In: ASE 2000, pp. 123–132 (2000)Google Scholar
- 15.Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as a congruence. Inf. Comput. 100(2), 202–260 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
- 16.Hausmann, D., Mossakowski, T., Schröder, L.: Iterative circular coinduction for coCASL in Isabelle/HOL. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 341–356. Springer, Heidelberg (2005)Google Scholar
- 17.Hennessy, M., Lin, H.: Proof systems for message-passing process algebras. Formal Asp. Comput. 8(4), 379–407 (1996)zbMATHCrossRefGoogle Scholar
- 18.Inverardi, P., Priami, C.: Automatic verification of distributed systems: The process algebra approach. Formal Methods in System Design 8(1), 7–38 (1996)CrossRefGoogle Scholar
- 19.Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: A behavioral verification tool based on circular coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 20.Lucanu, D., Roşu, G.: CIRC: A circular coinductive prover. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 372–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 21.Madelaine, E.: Verification tools from the CONCUR project, http://www-sop.inria.fr/meije/papers/concur-tools
- 22.Melham, T.F.: A mechanized theory of the pi-calculus in HOL. Nord. J. Comput. 1(1), 50–76 (1994)MathSciNetGoogle Scholar
- 23.Milner, R.: A complete inference system for a class of regular behaviours. J. Comput. Syst. Sci. 28(3), 439–466 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
- 24.Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
- 25.Monroy, R., Bundy, A., Green, I.: On process equivalence = equation solving in ccs. J. Autom. Reasoning 43(1), 53–80 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
- 26.Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years after. Theor. Comput. Sci. 373(3), 238–272 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
- 27.Popescu, A.: Weak bisimilarity coalgebraically. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 157–172. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 28.Popescu, A., Gunter, E.L.: Incremental pattern-based coinduction for process algebra and its Isabelle formalization. Technical Report, University of Illinosis, https://hdl.handle.net/2142/14858
- 29.Rensink, A.: Bisimilarity of open terms. Inf. Comput. 156(1-2), 345–385 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
- 30.Röckl, C., Hirschkoff, D.: A fully adequate shallow embedding of the π-calculus in Isabelle/HOL with mechanized syntax analysis. J. Funct. Program. 13(2) (2003)Google Scholar
- 31.Roşu, G., Lucanu, D.: Circular coinduction: A proof theoretical foundation. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–144. Springer, Heidelberg (2009)Google Scholar
- 32.Rutten, J.J.M.M.: Processes as terms: Non-well-founded models for bisimulation. Math. Struct. Comp. Sci. 2(3), 257–275 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
- 33.Rutten, J.J.M.M.: Elements of stream calculus (an extensive exercise in coinduction). Electr. Notes Theor. Comput. Sci., 45 (2001)Google Scholar
- 34.Sangiorgi, D.: On the bisimulation proof method. Math. Struct. Comp. Sci. 8(5), 447–479 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
- 35.Sangiorgi, D., Walker, D.: The π-calculus. A theory of mobile processes, Cambridge (2001)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2010