Incremental Pattern-Based Coinduction for Process Algebra and Its Isabelle Formalization

  • Andrei Popescu
  • Elsa L. Gunter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6014)


We present a coinductive proof system for bisimilarity in transition systems specifiable in the de Simone SOS format. Our coinduction is incremental, in that it allows building incrementally an a priori unknown bisimulation, and pattern-based, in that it works on equalities of process patterns (i.e., universally quantified equations of process terms containing process variables), thus taking advantage of equational reasoning in a “circular” manner, inside coinductive proof loops. The proof system has been formalized and proved sound in Isabelle/HOL.


  1. 1.
  2. 2.
    The Coq proof assistant,
  3. 3.
  4. 4.
    Aceto, L., Cimini, M., Ingolfsdottir, A.: A bisimulation-based method for proving the validity of equations in GSOS languages. To appear in Electr. Proc. Theor. Comput. Sci.Google Scholar
  5. 5.
    Bartels, F.: Generalised coinduction. Math. Struct. Comp. Sci. 13(2), 321–348 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268 (1995)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Bruni, R., de Frutos-Escrig, D., Martí-Oliet, N., Montanari, U.: Bisimilarity congruences for open terms and term graphs via Tile Logic. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 259–274. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Clavel, M., Durán, F.J., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: The Maude system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 240–243. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Dam, M., Gurov, D.: μ-calculus with explicit points and approximations. J. Log. Comput. 12(2), 255–269 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    de Simone, R.: Higher-level synchronizing devices in MEIJE-SCCS. Theor. Comput. Sci. 37, 245–267 (1985)MATHCrossRefGoogle Scholar
  12. 12.
    Doumenc, G., Madelaine, E., de Simone, R.: Proving process calculi translations in ECRINS: The pureLOTOS → MEIJE example. Technical Report RR1192, INRIA (1990),
  13. 13.
    Giménez, E.: An application of co-inductive types in Coq: Verification of the alternating bit protocol. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 135–152. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Goguen, J.A., Lin, K., Roşu, G.: Circular coinductive rewriting. In: ASE 2000, pp. 123–132 (2000)Google Scholar
  15. 15.
    Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as a congruence. Inf. Comput. 100(2), 202–260 (1992)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hausmann, D., Mossakowski, T., Schröder, L.: Iterative circular coinduction for coCASL in Isabelle/HOL. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 341–356. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Hennessy, M., Lin, H.: Proof systems for message-passing process algebras. Formal Asp. Comput. 8(4), 379–407 (1996)MATHCrossRefGoogle Scholar
  18. 18.
    Inverardi, P., Priami, C.: Automatic verification of distributed systems: The process algebra approach. Formal Methods in System Design 8(1), 7–38 (1996)CrossRefGoogle Scholar
  19. 19.
    Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: A behavioral verification tool based on circular coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Lucanu, D., Roşu, G.: CIRC: A circular coinductive prover. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 372–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Madelaine, E.: Verification tools from the CONCUR project,
  22. 22.
    Melham, T.F.: A mechanized theory of the pi-calculus in HOL. Nord. J. Comput. 1(1), 50–76 (1994)MathSciNetGoogle Scholar
  23. 23.
    Milner, R.: A complete inference system for a class of regular behaviours. J. Comput. Syst. Sci. 28(3), 439–466 (1984)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  25. 25.
    Monroy, R., Bundy, A., Green, I.: On process equivalence = equation solving in ccs. J. Autom. Reasoning 43(1), 53–80 (2009)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years after. Theor. Comput. Sci. 373(3), 238–272 (2007)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Popescu, A.: Weak bisimilarity coalgebraically. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 157–172. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Popescu, A., Gunter, E.L.: Incremental pattern-based coinduction for process algebra and its Isabelle formalization. Technical Report, University of Illinosis,
  29. 29.
    Rensink, A.: Bisimilarity of open terms. Inf. Comput. 156(1-2), 345–385 (2000)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Röckl, C., Hirschkoff, D.: A fully adequate shallow embedding of the π-calculus in Isabelle/HOL with mechanized syntax analysis. J. Funct. Program. 13(2) (2003)Google Scholar
  31. 31.
    Roşu, G., Lucanu, D.: Circular coinduction: A proof theoretical foundation. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–144. Springer, Heidelberg (2009)Google Scholar
  32. 32.
    Rutten, J.J.M.M.: Processes as terms: Non-well-founded models for bisimulation. Math. Struct. Comp. Sci. 2(3), 257–275 (1992)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Rutten, J.J.M.M.: Elements of stream calculus (an extensive exercise in coinduction). Electr. Notes Theor. Comput. Sci., 45 (2001)Google Scholar
  34. 34.
    Sangiorgi, D.: On the bisimulation proof method. Math. Struct. Comp. Sci. 8(5), 447–479 (1998)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sangiorgi, D., Walker, D.: The π-calculus. A theory of mobile processes, Cambridge (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andrei Popescu
    • 1
  • Elsa L. Gunter
    • 1
  1. 1.University of Illinois at Urbana-Champaign 

Personalised recommendations