Advertisement

Fair Adversaries and Randomization in Two-Player Games

  • Eugene Asarin
  • Raphaël Chane-Yack-Fa
  • Daniele Varacca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6014)

Abstract

Two-player games are used to model open systems. One player models the system, trying to respect some specification, while the other player models the environment. In classical model checking, the objective is to verify that the system can respect its specification, whatever the environment does.

In this article, we consider a more realistic scenario when the environment is supposed to be fair. We define a notion of fair player in two-player games. Our solution is inspired by Banach-Mazur games, and leads to a definition of a novel class of 3-player games called ABM-games. For ω-regular specifications on finite arenas, we explore the properties of ABM-games and devise an algorithm for solving them. As the main result, we show that winning in an ABM-game (i.e. winning against a fair player) is equivalent to winning with probability one against the randomized adversary.

Keywords

Games Markov decision processes fairness 

References

  1. 1.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model checking of infinite paths in one-clock timed automata. In: LICS 2008, pp. 217–226. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  2. 2.
    Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time logic with fairness. Distributed Computing 11(3), 125–155 (1998)CrossRefGoogle Scholar
  3. 3.
    Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability of stochastic games with signals. In: LICS 2009, pp. 319–328. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  4. 4.
    Berwanger, D., Grädel, E., Kreutzer, S.: Once upon a time in the West. Determinacy, complexity and definability of path games. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 226–240. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games with imperfect information. Logical Methods in Computer Science 3(3) (2007)Google Scholar
  6. 6.
    Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In: SODA 2004, pp. 114–123. ACM/SIAM (2004)Google Scholar
  7. 7.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy (extended abstract). In: FOCS 1991, pp. 368–377. IEEE Computer Society, Los Alamitos (1991)Google Scholar
  9. 9.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  10. 10.
    Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)Google Scholar
  11. 11.
    Mauldin, D. (ed.): The Scottish Book. Birkhäuser, Basel (1981)zbMATHGoogle Scholar
  12. 12.
    Schmalz, M., Varacca, D., Völzer, H.: Counterexamples in probabilistic LTL model checking for Markov chains. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009 - Concurrency Theory. LNCS, vol. 5710, pp. 587–602. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Schmalz, M., Völzer, H., Varacca, D.: Model checking almost all paths can be less expensive than checking all paths. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 532–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Varacca, D., Völzer, H.: Temporal logics and model checking for fairly correct systems. In: LICS 2006, pp. 389–398. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  15. 15.
    Völzer, H., Varacca, D., Kindler, E.: Defining fairness. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 458–472. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Computer Science 200, 135–183 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eugene Asarin
    • 1
  • Raphaël Chane-Yack-Fa
    • 2
  • Daniele Varacca
    • 3
  1. 1.LIAFACNRS & Univ. Paris DiderotFrance
  2. 2.Département d’informatiqueUniv. de SherbrookeCanada
  3. 3.PPSCNRS & Univ. Paris DiderotFrance

Personalised recommendations