Advertisement

Reachability Analysis of Communicating Pushdown Systems

  • Alexander Heußner
  • Jérôme Leroux
  • Anca Muscholl
  • Grégoire Sutre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6014)

Abstract

The reachability analysis of recursive programs that communicate asynchronously over reliable Fifo channels calls for restrictions to ensure decidability. We extend here a model proposed by La Torre, Madhusudan and Parlato [16], based on communicating pushdown systems that can dequeue with empty stack only. Our extension adds the dual modality, which allows to dequeue with non-empty stack, and thus models interrupts for working threads. We study (possibly cyclic) network architectures under a semantic assumption on communication that ensures the decidability of reachability for finite state systems. Subsequently, we determine precisely how pushdowns can be added to this setting while preserving the decidability; in the positive case we obtain exponential time as the exact complexity bound of reachability. A second result is a generalization of the doubly exponential time algorithm of [16] for bounded context analysis to our symmetric queueing policy. We provide here a direct and simpler algorithm.

Keywords

Model Check Exponential Time Reachability Analysis Communication Architecture Reachability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Atig, M.F., Bouajjani, A., Habermehl, P.: Emptiness of multi-pushdown automata is 2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 121–133. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Atig, M.F., Bouajjani, A., Touili, T.: On the reachability analysis of acyclic networks of pushdown systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 356–371. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Comput. 127(2), 91–101 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of multithreaded software with asynchronous communication. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. of the ACM 30(2), 323–342 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf. Comput. 202(2), 166–190 (2005)CrossRefzbMATHGoogle Scholar
  8. 8.
    Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations for pushdown systems. Inf. Comput. 186(2), 355–376 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algorithms for existentially bounded communicating automata. Inf. Comput. 204(6), 920–956 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded channels. Fundamenta Informaticae 80, 147–167 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In: POPL 2007, pp. 339–350. ACM, New York (2007)CrossRefGoogle Scholar
  13. 13.
    Rao Kosaraju, S.: Decidability of reachability in vector addition systems. In: STOC 1982, pp. 267–281. ACM, New York (1982)CrossRefGoogle Scholar
  14. 14.
    Lohrey, M., Muscholl, A.: Bounded MSC communication. Inf. Comput. 189(2), 160–181 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive languages. In: LICS 2007, pp. 161–170. IEEE, Los Alamitos (2007)Google Scholar
  16. 16.
    La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 299–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM J. Comput. 13(3), 441–460 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Papadimitriou, C.: Computational Complexity. Addison Wesley, Reading (1994)zbMATHGoogle Scholar
  19. 19.
    Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Sen, K., Viswanathan, M.: Model checking multithreaded programs with synchronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 300–314. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander Heußner
    • 1
  • Jérôme Leroux
    • 1
  • Anca Muscholl
    • 1
  • Grégoire Sutre
    • 1
  1. 1.LaBRIUniversité Bordeaux, CNRSFrance

Personalised recommendations