Air-Indexing on Error Prone Communication Channels

  • Emmanuel Müller
  • Philipp Kranen
  • Michael Nett
  • Felix Reidl
  • Thomas Seidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5981)

Abstract

Air-Indexing aims at efficient data dissemination via a wireless broadcast channel to a multitude of mobile clients. As mobile devices have very limited resources, energy efficiency is crucial in such scenarios. Moreover, one has to cope with high error rates on wireless transmissions resulting in packet losses which lead to high energy consumption and long waiting times until a query result is available. We propose a novel cross-layer scheduling with adaptive error correction which enables flexible query optimization on mobile clients. RepAir ensures efficiency by adapting its query processing according to the individual error rate of each client. Thorough experiments show that RepAir yields substantial efficiency improvements in terms of access latency and tuning time compared to competing Air-Indexing approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD, pp. 322–331 (1990)Google Scholar
  2. 2.
    Gedik, B., Singh, A., Liu, L.: Energy efficient exact KNN search in wireless broadcast environments. In: GIS, pp. 137–146 (2004)Google Scholar
  3. 3.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)Google Scholar
  4. 4.
    Im, S., Song, M., Hwang, C.S.: An error-resilient cell-based distributed index for location-based wireless broadcast services. In: MobiDE, pp. 59–66 (2006)Google Scholar
  5. 5.
    Imielinski, T., Viswanathan, S., Badrinath, B.R.: Energy efficient indexing on air. In: SIGMOD, pp. 25–36 (1994)Google Scholar
  6. 6.
    Imielinski, T., Viswanathan, S., Badrinath, B.R.: Data on air: Organization and access. TKDE 9(3), 353–372 (1997)Google Scholar
  7. 7.
    Laiho, J., Wacker, A., Novosad, T.: Radio Network Planning and Optimisation for UMTS. Wiley, Chichester (2005)CrossRefGoogle Scholar
  8. 8.
    Lee, K.C.K., Schiffman, J., Zheng, B., Lee, W.C.: Valid scope computation for location-dependent spatial query in mobile broadcast environments. In: CIKM (2008)Google Scholar
  9. 9.
    Lee, W.C., Zheng, B.: DSI: A fully distributed spatial index for location-based wireless broadcast services. In: ICDCS, pp. 349–358 (2005)Google Scholar
  10. 10.
    Lo, S.C., Chen, A.L.P.: An adaptive access method for broadcast data under an error-prone mobile environment. TKDE 12(4), 609–620 (2000)Google Scholar
  11. 11.
    Luby, M.: LT codes. In: FOCS, pp. 271–280 (2002)Google Scholar
  12. 12.
    MacKay, D.: Fountain codes. Communications, IEE 152(6), 1062–1068 (2005)CrossRefGoogle Scholar
  13. 13.
    Müller, E., Kranen, P., Nett, M., Reidl, F., Seidl, T.: A general framework for data dissemination simulation for real world scenarios. In: MOBICOM (2008)Google Scholar
  14. 14.
    Xu, J., Zheng, B., Lee, W.-C., Lee, D.L.: Energy efficient index for querying location-dependent data in mobile broadcast environments. In: ICDE, pp. 239–250 (2003)Google Scholar
  15. 15.
    Xu, J., Zheng, B., Lee, W.C., Lee, D.L.: The D-Tree: An index structure for planar point queries in location-based wireless services. TKDE 16(12), 1526–1542 (2004)Google Scholar
  16. 16.
    Zhang, X., Lee, W.C., Mitra, P., Zheng, B.: Processing transitive nearest-neighbor queries in multi-channel access environments. In: EDBT, pp. 452–463 (2008)Google Scholar
  17. 17.
    Zheng, B., Xu, J., Lee, W.C., Lee, D.L.: Grid-partition index: a hybrid method for nearest-neighbor queries in wireless location-based services. VLDB J. 15(1), 21–39 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Emmanuel Müller
    • 1
  • Philipp Kranen
    • 1
  • Michael Nett
    • 1
  • Felix Reidl
    • 1
  • Thomas Seidl
    • 1
  1. 1.Data Management and Data Exploration GroupRWTH Aachen UniversityGermany

Personalised recommendations