Advertisement

Efficient Approximate Visibility Query in Large Dynamic Environments

  • Leyla Kazemi
  • Farnoush Banaei-Kashani
  • Cyrus Shahabi
  • Ramesh Jain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5981)

Abstract

Visibility query is fundamental to many analysis and decision-making tasks in virtual environments. Visibility computation is time complex and the complexity escalates in large and dynamic environments, where the visibility set (i.e., the set of visible objects) of any viewpoint is probe to change at any time. However, exact visibility query is rarely necessary. Besides, it is inefficient, if not infeasible, to obtain the exact result in a dynamic environment. In this paper, we formally define an Approximate Visibility Query (AVQ) as follows: given a viewpoint v, a distance ε and a probability p, the answer to an AVQ for the viewpoint v is an approximate visibility set such that its difference with the exact visibility set is guaranteed to be less than ε with confidence p. We propose an approach to correctly and efficiently answer AVQ in large and dynamic environments. Our extensive experiments verified the efficiency of our approach.

Keywords

Virtual Environment Dynamic Environment Visible Object Query Point Representative Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Airey, J.M., Rohlf, J.H., Brooks Jr., F.P.: Towards image realism with interactive update rates in complex virtual building environments. SIGGRAPH 24(2), 41–50 (1990)CrossRefGoogle Scholar
  2. 2.
    Batagelo, H., Shin-Ting, W.: Dynamic scene occlusion culling using a regular grid. In: Computer Graphics and Image Processing, pp. 43–50 (2002)Google Scholar
  3. 3.
    Bittner, J., Havran, V., Slavk, P.: Hierarchical visibility culling with occlusion trees. In: CGI, pp. 207–219. IEEE, Los Alamitos (1998)Google Scholar
  4. 4.
    Bukauskas, L., Mark, L., Omiecinski, E., Böhlen, M.H.: itopn: incremental extraction of the n most visible objects. In: CIKM, pp. 461–468 (2003)Google Scholar
  5. 5.
    Chenney, S., Forsyth, D.: View-dependent culling of dynamic systems in virtual environments. In: SI3D, pp. 55–58 (1997)Google Scholar
  6. 6.
    Cohenor, D., Chrysanthou, Y., Silva, C.T., Durand, F.: A survey of visibility for walkthrough applications. IEEE Transactions on Visualization and Computer Graphics 9(3), 412–431 (2003)CrossRefGoogle Scholar
  7. 7.
    Erikson, C., Manocha, D., Baxter III., V.: Hlods for faster display of large static and dynamic environments. In: I3D, pp. 111–120 (2001), doi:10.1145/364338.364376Google Scholar
  8. 8.
    Gibbons, P.B., Matias, Y., Poosala, V.: Fast incremental maintenance of approximate histograms. ACM Trans. Database Syst. 27(3), 261–298 (2002)CrossRefGoogle Scholar
  9. 9.
    Greene, N., Kass, M., Miller, G.: Hierarchical z-buffer visibility. In: SIGGRAPH, pp. 231–238 (1993)Google Scholar
  10. 10.
    Kofler, M., Gervautz, M., Gruber, M.: R-trees for organizing and visualizing 3d gis databases. Journal of Visualization and Computer Animation 11(3), 129–143 (2000)CrossRefGoogle Scholar
  11. 11.
    Lee, K.C.K., Lee, W.-C., Leong, H.V.: Nearest surrounder queries. In: ICDE, p. 85 (2006)Google Scholar
  12. 12.
    Nutanong, S., Tanin, E., Zhang, R.: Visible nearest neighbor queries. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 876–883. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures (2005)Google Scholar
  14. 14.
    Shou, L., Chionh, J., Huang, Z., Ruan, Y., Tan, K.-L.: Walking through a very large virtual environment in real-time. In: VLDB, pp. 401–410 (2001)Google Scholar
  15. 15.
    Shou, L., Huang, Z., Tan, K.-L.: Hdov-tree: The structure, the storage, the speed. In: ICDE, pp. 557–568 (2003)Google Scholar
  16. 16.
    Sudarsky, O., Gotsman, C.: Output-senstitive rendering and communication in dynamic virtual environments. In: VRST, pp. 217–223 (1997)Google Scholar
  17. 17.
    Teller, S.J., Séquin, C.H.: Visibility preprocessing for interactive walkthroughs. SIGGRAPH 25(4), 61–70 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Leyla Kazemi
    • 1
  • Farnoush Banaei-Kashani
    • 1
  • Cyrus Shahabi
    • 1
  • Ramesh Jain
    • 2
  1. 1.InfoLab Computer Science DepartmentUniversity of Southern CaliforniaLos Angeles
  2. 2.Bren School of Information and Computer SciencesUniversity of CaliforniaIrvine

Personalised recommendations