Optimal Tableau Algorithms for Coalgebraic Logics

  • Rajeev Goré
  • Clemens Kupke
  • Dirk Pattinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6015)

Abstract

Deciding whether a modal formula is satisfiable with respect to a given set of (global) assumptions is a question of fundamental importance in applications of logic in computer science. Tableau methods have proved extremely versatile for solving this problem for many different individual logics but they typically do not meet the known complexity bounds for the logics in question. Recently, it has been shown that optimality can be obtained for some logics while retaining practicality by using a technique called “global caching”. Here, we show that global caching is applicable to all logics that can be equipped with coalgebraic semantics, for example, classical modal logic, graded modal logic, probabilistic modal logic and coalition logic. In particular, the coalgebraic approach also covers logics that combine these various features. We thus show that global caching is a widely applicable technique and also provide foundations for optimal tableau algorithms that uniformly apply to a large class of modal logics.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Chellas, B.: Modal Logic, Cambridge (1980)Google Scholar
  3. 3.
    Cîrstea, C.: A compositional approach to defining logics for coalgebras. Theoret. Comput. Sci. 327, 45–69 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cîrstea, C., Kupke, C., Pattinson, D.: EXPTIME tableaux for the coalgebraic μ- calculus. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 179–193. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Cîrstea, C., Pattinson, D.: Modular proof systems for coalgebraic logics. Theor. Comp. Sci. 388, 83–108 (2007)MATHGoogle Scholar
  6. 6.
    Donini, F., Massacci, F.: Exptime tableaux for \(\mathcal{ALC}\). Artif. Intell. 124(1), 87–138 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. The MIT Press, Cambridge (1995)MATHGoogle Scholar
  8. 8.
    Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520 (1972)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, et al. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer, Dordrecht (1999)Google Scholar
  10. 10.
    Goré, R., Nguyen, L.: EXPTIME tableaux for \(\mathcal{ALC}\) using sound global caching. In: Calvanese, D., Franconi, E., Haarslev, V., Lembo, D., Motik, B., Turhan, A., Tessaris, S. (eds.) Proc. Description Logics 2007. CEUR Workshop Proceedings. CEUR-WS.org, vol. 250 (2007)Google Scholar
  11. 11.
    Goré, R., Nguyen, L.: EXPTIME tableaux with global caching for description logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Goré, R., Postniece, L.: An experimental evaluation of global caching for \(\mathcal{ALC}\) (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 299–305. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Goré, R., Widmann, F.: Sound global state caching for \(\mathcal{ALC}\) with inverse roles. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 205–219. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)MATHGoogle Scholar
  16. 16.
    Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic Behavior 35, 31–53 (2001)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Horrocks, I., Patel-Schneider, P.: Optimising description logic subsumption. J. Logic Comput. 9, 267–293 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–42. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309, 177–193 (2003)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pattinson, D., Schröder, L.: Admissibility of cut in coalgebraic logics. Electr. Notes Theor. Comput. Sci. 203(5), 221–241 (2008)CrossRefGoogle Scholar
  21. 21.
    Pauly, M.: A modal logic for coalitional power in games. J. Logic Comput. 12(1), 149–166 (2002)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Algebr. Program. 73(1-2), 97–110 (2007)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Schröder, L., Pattinson, D.: Compositional algorithms for heterogeneous modal logics. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 459–471. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Transactions on Computational Logics 10(2) (2009)Google Scholar
  25. 25.
    Schröder, L., Pattinson, D., Kupke, C.: Nominals for everyone. In: Boutilier, C. (ed.) Proc. IJCAI 2009, pp. 917–922 (2009)Google Scholar
  26. 26.
    Stirling, C.: Modal and temporal logics. In: Handbook of logic in computer science. Background: computational structures, vol. 2, pp. 477–563. Oxford University Press, Inc., Oxford (1992)Google Scholar
  27. 27.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rajeev Goré
    • 1
  • Clemens Kupke
    • 2
  • Dirk Pattinson
    • 2
  1. 1.Computer Science LaboratoryThe Australian National University 
  2. 2.Department of ComputingImperial CollegeLondon

Personalised recommendations