Advertisement

Approximating the Pareto Front of Multi-criteria Optimization Problems

  • Julien Legriel
  • Colas Le Guernic
  • Scott Cotton
  • Oded Maler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6015)

Abstract

We propose a general methodology for approximating the Pareto front of multi-criteria optimization problems. Our search-based methodology consists of submitting queries to a constraint solver. Hence, in addition to a set of solutions, we can guarantee bounds on the distance to the actual Pareto front and use this distance to guide the search. Our implementation, which computes and updates the distance efficiently, has been tested on numerous examples.

Keywords

Leaf Node Pareto Front Pareto Solution Constraint Solver Multicriteria Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)zbMATHGoogle Scholar
  2. 2.
    Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ehrgott, M.: Multicriteria optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  4. 4.
    Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spectrum 22(4), 425–460 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Figueira, J., Greco, S., Ehrgott, M.: Multiple criteria decision analysis: state of the art surveys. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  6. 6.
    Legriel, J., Maler, O.: Meeting deadlines cheaply. Technical Report 2010-1, VERIMAG (January 2010)Google Scholar
  7. 7.
    Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: FOCS, pp. 86–92 (2000)Google Scholar
  9. 9.
    Pareto, V.: Manuel d’économie politique. Bull. Amer. Math. Soc. 18, 462–474 (1912)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Steuer, R.E.: Multiple criteria optimization: Theory, computation, and application. John Wiley & Sons, Chichester (1986)zbMATHGoogle Scholar
  11. 11.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar
  12. 12.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Julien Legriel
    • 1
    • 2
  • Colas Le Guernic
    • 1
  • Scott Cotton
    • 1
  • Oded Maler
    • 1
  1. 1.cnrs-verimag Email: @imag.frGieresFrance
  2. 2.STMicroelectronicsGrenobleFrance

Personalised recommendations