Advertisement

A Polymorphic Intermediate Verification Language: Design and Logical Encoding

  • K. Rustan M. Leino
  • Philipp Rümmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6015)

Abstract

Intermediate languages are a paradigm to separate concerns in software verification systems when bridging the gap between programming languages and the logics understood by theorem provers. While such intermediate languages traditionally only offer rather simple type systems, this paper argues that it is both advantageous and feasible to integrate richer type systems with features like (higher-ranked) polymorphism and quantification over types. As a concrete solution, the paper presents the type system of Boogie 2, an intermediate verification language that is used in several program verifiers. The paper gives two encodings of types and formulae in simply typed logic such that SMT solvers and other theorem provers can be used to discharge verification conditions.

Keywords

Type System Theorem Prover Type Parameter Typing Rule Type Constructor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library, SMT-LIB (2008), www.SMT-LIB.org
  3. 3.
    Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT solvers. In: SMT 2008 (2008)Google Scholar
  4. 4.
    Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachability predicate for analyzing low-level software. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 19–33. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A practical verification methodology for concurrent programs. MSR-TR 2009-15, Microsoft Research (2009)Google Scholar
  6. 6.
    Couchot, J.F., Lescuyer, S.: Handling polymorphism in automated deduction. In: CADE-21, pp. 263–278 (2007)Google Scholar
  7. 7.
    Dahn, I.: Interpretation of a Mizar-like logic in first-order logic. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761, pp. 137–151. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking object-oriented programs. MSR-TR 2005-70, Microsoft Research (March 2005)Google Scholar
  9. 9.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)MathSciNetGoogle Scholar
  10. 10.
    Filliâtre, J.C.: Why: a multi-language multi-prover verification tool. Research Report 1366, LRI, Université Paris Sud (March 2003)Google Scholar
  11. 11.
    Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static checking for Java. In: PLDI 2002. ACM, New York (2002)Google Scholar
  12. 12.
    Hurd, J.: First-order proof tactics in higher-order logic theorem provers. Technical Report NASA/CP-2003-212448, pp. 56–68 (2003)Google Scholar
  13. 13.
    Leino, K.R.M.: This is Boogie 2. Manuscript KRML 178 (2008), http://research.microsoft.com/~leino/papers.html
  14. 14.
    Leino, K.R.M.: Specification and verification of object-oriented software. In: Summer School Marktoberdorf 2008. NATO ASI Series F. IOS Press, Amsterdam (2009)Google Scholar
  15. 15.
    Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order SMT solvers. In: SAC 2009, pp. 615–622. ACM, New York (2009)CrossRefGoogle Scholar
  16. 16.
    Leino, K.R.M., Saxe, J.B., Stata, R.: Checking Java programs via guarded commands. FTfJP 1999. Tech. Rep. 251, Fernuniversität Hagen (May 1999)Google Scholar
  17. 17.
    Manzano, M.: Extensions of First-Order Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  18. 18.
    McBride, C.: Elimination with a motive. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 197–216. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress 62, pp. 21–28. North-Holland, Amsterdam (1962)Google Scholar
  20. 20.
    Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reason. 40(1), 35–60 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly language. TOPLAS 21(3), 527–568 (1999)CrossRefGoogle Scholar
  22. 22.
    Pierce, B.C.: Types and Programming Languages. The MIT Press, Cambridge (2002)Google Scholar
  23. 23.
    Poetzsch-Heffter, A.: Specification and verification of object-oriented programs. Habilitationsschrift, Technische Universität München (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • K. Rustan M. Leino
    • 1
  • Philipp Rümmer
    • 2
  1. 1.Microsoft ResearchRedmond
  2. 2.Oxford University Computing Laboratory 

Personalised recommendations