When Simulation Meets Antichains

(On Checking Language Inclusion of Nondeterministic Finite (Tree) Automata)
  • Parosh Aziz Abdulla
  • Yu-Fang Chen
  • Lukáš Holík
  • Richard Mayr
  • Tomáš Vojnar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6015)

Abstract

We describe a new and more efficient algorithm for checking universality and language inclusion on nondeterministic finite word automata (NFA) and tree automata (TA). To the best of our knowledge, the antichain-based approach proposed by De Wulf et al. was the most efficient one so far. Our idea is to exploit a simulation relation on the states of finite automata to accelerate the antichain-based algorithms. Normally, a simulation relation can be obtained fairly efficiently, and it can help the antichain-based approach to prune out a large portion of unnecessary search paths. We evaluate the performance of our new method on NFA/TA obtained from random regular expressions and from the intermediate steps of regular model checking. The results show that our approach significantly outperforms the previous antichain-based approach in most of the experiments.

References

  1. 1.
    Abdulla, P.A., Bouajjani, A., Holík, L., Kaati, L., Vojnar, T.: Computing Simulations over Tree Automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When Simulation Meets Antichains (On Checking Language Inclusion of Nondeterministic Finite (Tree) Automata). Technical report, FIT-TR-2010-001, FIT, Brno University of Technology, Czech Republic (2010)Google Scholar
  3. 3.
    Bouajjani, A., Habermehl, P., Holík, L., Touili, T., Vojnar, T.: Antichain-Based Universality and Inclusion Testing over Nondet. Finite Tree Automata. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bouajjani, A., Habermehl, P., Moro, P., Vojnar, T.: Verifying Programs with Dynamic 1-Selector-Linked Structures in Regular Model Checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 13–29. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract Regular Model Checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Brzozowski, J.A.: Canonical Regular Expressions and Minimal State Graphs for Definite Events. In: Mathematical Theory of Automata (1962)Google Scholar
  7. 7.
    Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for Language Inclusion Using Simulation Preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575. Springer, Heidelberg (1992)Google Scholar
  8. 8.
    Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Proc. 36th FOCS (1995)Google Scholar
  9. 9.
    Holík, L., Šimáček, J.: Optimizing an LTS-Simulation Algorithm. In: Proc. of MEMICS 2009 (2009)Google Scholar
  10. 10.
    Hopcroft, J.E.: An n.log n Algorithm for Minimizing States in a Finite Automaton. Technical Report CS-TR-71-190, Stanford University (1971)Google Scholar
  11. 11.
    Meyer, A.R., Stockmeyer, L.J.: The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space. In: Proc. of the 13th Annual Symposium on Switching and Automata Theory. IEEE CS, Los Alamitos (1972)Google Scholar
  12. 12.
    Møller, F. (2004), http://www.brics.dk/automaton
  13. 13.
    De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A New Algorithm for Checking Universality of Finite Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  • Yu-Fang Chen
    • 1
  • Lukáš Holík
    • 2
  • Richard Mayr
    • 3
  • Tomáš Vojnar
    • 2
  1. 1.Uppsala University 
  2. 2.Brno University of Technology 
  3. 3.University of Edinburgh 

Personalised recommendations