Abstract

Boolean satisfiability (SAT) and its extensions are becoming a core technology for the analysis of systems. The SAT-based approach divides into three steps: encoding, preprocessing, and search. It is often argued that by encoding arbitrary Boolean formulas in conjunctive normal form (CNF), structural properties of the original problem are not reflected in the CNF. This should result in the fact that CNF-level preprocessing and SAT solver techniques have an inherent disadvantagecompared to related techniques applicable on the level of more structural SAT instance representations such as Boolean circuits. In this work we study the effect of a CNF-level simplification technique called blocked clause elimination (BCE). We show that BCE is surprisingly effective both in theory and in practice on CNFs resulting from a standard CNF encoding for circuits: without explicit knowledge of the underlying circuit structure, it achieves the same level of simplification as a combination of circuit-level simplifications and previously suggested polarity-based CNF encodings. Experimentally, we show that by applying BCE in preprocessing, further formula reduction and faster solving can be achieved, giving promise for applying BCE to speed up solvers.

References

  1. 1.
    Jackson, P., Sheridan, D.: Clause form conversions for Boolean circuits. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 183–198. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Mishchenko, A., Chatterjee, S., Brayton, R.K.: DAG-aware AIG rewriting: A fresh look at combinational logic synthesis. In: DAC 2006, pp. 532–535. ACM, New York (2006)CrossRefGoogle Scholar
  3. 3.
    Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 272–286. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Manolios, P., Vroon, D.: Efficient circuit to CNF conversion. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 4–9. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Chambers, B., Manolios, P., Vroon, D.: Faster SAT solving with better CNF generation. In: DATE 2009, pp. 1590–1595. IEEE, Los Alamitos (2009)Google Scholar
  6. 6.
    Ostrowski, R., Grégoire, É., Mazure, B., Sais, L.: Recovering and exploiting structural knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 185–199. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(1), 52–59 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In: AAAI 2002, pp. 613–619. AAAI Press, Menlo Park (2002)Google Scholar
  9. 9.
    Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 423–429. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97, 149–176 (1999)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning 2: Classical Papers on Computational Logic 1967–1970, pp. 466–483. Springer, Heidelberg (1983)Google Scholar
  14. 14.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2(3), 293–304 (1986)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifiying safety properties of a power PC microprocessor using symbolic model checking without BDDs. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 60–71. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Jussila, T., Biere, A.: Compressing BMC encodings with QBF. Electronic Notes in Theoretical Computer Science 174(3), 45–56 (2007)CrossRefGoogle Scholar
  17. 17.
    Drechsler, R., Junttila, T., Niemelä, I.: Non-clausal SAT and ATPG. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 655–694. IOS Press, Amsterdam (2009)Google Scholar
  18. 18.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Purdom, P.W.: Solving satisfiability with less searching. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(4), 510–513 (1984)MATHCrossRefGoogle Scholar
  20. 20.
    Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.E.: Balance and filtering in structured satisfiable problems. In: IJCAI 2001, pp. 351–358. Morgan Kaufmann, San Francisco (2001)Google Scholar
  21. 21.
    Heule, M.J.H., Verwer, S.: Using a satisfiability solver to identify deterministic finite state automata. In: BNAIC 2009, pp. 91–98 (2009)Google Scholar
  22. 22.
    Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 174–177. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Matti Järvisalo
    • 1
  • Armin Biere
    • 2
  • Marijn Heule
    • 3
  1. 1.Department of Computer ScienceUniversity of HelsinkiFinland
  2. 2.Institute for Formal Models and VerificationJohannes Kepler UniversityLinzAustria
  3. 3.Algorithmics GroupDelft University of TechnologyThe Netherlands

Personalised recommendations