Advertisement

Practical Extensions to the IFDS Algorithm

  • Nomair A. Naeem
  • Ondřej Lhoták
  • Jonathan Rodriguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6011)

Abstract

This paper presents four extensions to the Interprocedural Finite Distributive Subset (IFDS) algorithm that make it applicable to a wider class of analysis problems. IFDS is a dynamic programming algorithm that implements context-sensitive flow-sensitive interprocedural dataflow analysis. The first extension constructs the nodes of the supergraph on demand as the analysis requires them, eliminating the need to build a full supergraph before the analysis. The second extension provides the procedure-return flow function with additional information about the program state before the procedure was called. The third extension improves the precision with which φ instructions are modelled when analyzing a program in SSA form. The fourth extension speeds up the algorithm on domains in which some of the dataflow facts subsume each other. These extensions are often necessary when applying the IFDS algorithm to non-separable (i.e. non-bit-vector) problems. We have found them necessary for alias set analysis and multi-object typestate analysis. In this paper, we illustrate and evaluate the extensions on a simpler problem, a variation of variable type analysis.

Keywords

Type Circle Start Node Program Point Call Graph Extended Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., Van Drunen, T., von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking development and analysis. In: OOPSLA 2006, pp. 169–190 (2006)Google Scholar
  2. 2.
    Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient method of computing static single assignment form. In: POPL 1989, pp. 25–35 (1989)Google Scholar
  3. 3.
    Duesterwald, E., Gupta, R., Soffa, M.L.: Demand-driven computation of interprocedural data flow. In: POPL 1995, pp. 37–48 (1995)Google Scholar
  4. 4.
    Duesterwald, E., Gupta, R., Soffa, M.L.: A practical framework for demand-driven interprocedural data flow analysis. ACM Trans. Program. Lang. Syst. 19(6), 992–1030 (1997)CrossRefGoogle Scholar
  5. 5.
    Dufour, B.: Objective quantification of program behaviour using dynamic metrics. Master’s thesis, McGill University (June 2004)Google Scholar
  6. 6.
    Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verification in the presence of aliasing. In: ISSTA 2006, pp. 133–144 (2006)Google Scholar
  7. 7.
    Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17(2), 1–34 (2008)CrossRefGoogle Scholar
  8. 8.
    Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In: SIGSOFT FSE 1995, pp. 104–115 (1995)Google Scholar
  9. 9.
    Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Inf. 7, 305–317 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kildall, G.A.: A unified approach to global program optimization. In: POPL 1973, pp. 194–206 (1973)Google Scholar
  11. 11.
    Lhoták, O.: Comparing call graphs. In: PASTE 2007, pp. 37–42 (2007)Google Scholar
  12. 12.
    Naeem, N.A., Lhoták, O.: Typestate-like analysis of multiple interacting objects. In: OOPSLA 2008, pp. 347–366 (2008)Google Scholar
  13. 13.
    Naeem, N.A., Lhoták, O.: Efficient alias set analysis using SSA form. In: ISMM 2009, pp. 79–88 (2009)Google Scholar
  14. 14.
    Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Press (2008)Google Scholar
  15. 15.
    Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reachability. In: POPL 1995, pp. 49–61 (1995)Google Scholar
  16. 16.
    Reps, T.W.: Solving demand versions of interprocedural analysis problems. In: Fritzson, P.A. (ed.) CC 1994. LNCS, vol. 786, pp. 389–403. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural shape analysis for cutpoint-free programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 284–302. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with applications to constant propagation. Theoretical Computer Science 167(1-2), 131–170 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Muchnick, S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applications, ch. 7, pp. 189–233. Prentice-Hall, Englewood Cliffs (1981)Google Scholar
  20. 20.
    Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using automata-based abstractions. In: ISSTA 2007, pp. 174–184 (2007)Google Scholar
  21. 21.
    Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon, E., Godin, C.: Practical virtual method call resolution for Java. In: OOPSLA 2000, pp. 264–280 (2000)Google Scholar
  22. 22.
    Vallée-Rai, R., Gagnon, E., Hendren, L.J., Lam, P., Pominville, P., Sundaresan, V.: Optimizing Java bytecode using the Soot framework: is it feasible? In: Watt, D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nomair A. Naeem
    • 1
  • Ondřej Lhoták
    • 1
  • Jonathan Rodriguez
    • 1
  1. 1.University of WaterlooCanada

Personalised recommendations