Firefly Flashing Synchronization as Inspiration for Self-synchronization of Walking Robot Gait Patterns Using a Decentralized Robot Control Architecture

  • Bojan Jakimovski
  • Benjamin Meyer
  • Erik Maehle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5974)


In this paper we introduce and elaborate a biologically inspired methodology for robot walking gait pattern self-synchronization using ORCA (Organic Robot Control Architecture). The firefly based pulse coupled biological oscillator concept has been successfully applied for achieving self-organized synchronization of walking robot gait patterns by dynamically prolonging and shortening of robot’s legs stance and swing phases. The results from the experiments done on our hexapod robot demonstrator show the practical usefulness of this biologically inspired approach for run-time self-synchronizing of walking robot gait pattern parameters.


self-synchronization organic robot control architecture dynamically prolongation and shortening of robot’s walking gait patterns emergent robot gait synchronization firefly synchronization decentralized robot control architecture robot gait pattern self-synchronization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Han, B., Luo, Q., Wang, Q., Zhao, X.: A Research on Hexapod Walking Bio-robot’s Working Space and Flexibility. In: IEEE International Conference on Robotics and Biomimetics, pp. 813–817 (2006)Google Scholar
  2. 2.
    Cifuentes, N.J.R., Porras, J.H.G.: Modeling of legged robot based on Colombian insect observations. In: Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 506–511 (2007)Google Scholar
  3. 3.
    German Science Foundation (DFG) Priority Program SPP 1183, Organic Computing (2004),
  4. 4.
    Müller-Schloer, C.: Organic Computing – On the Feasibility of Controlled Emergence. In: Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp. 2–5 (2004)Google Scholar
  5. 5.
    Suzuki, H., Nishi, H., Aburadani, A., Inoue, S.: Animal Gait Generation for Quadrupedal Robot. Second International Conference on Innovative Computing, Information and Control (ICICIC), pp.20 (2007) Google Scholar
  6. 6.
    Delcomyn, F.: Neural basis for rhythmic behaviour in animals. Science 210, 492–498 (1980)CrossRefGoogle Scholar
  7. 7.
    Barnes, D.: Hexapodal robot locomotion over uneven terrain. In: Proceedings of the 1998 IEEE International Conference on Control Application, vol. 1, pp. 441–445 (1998)Google Scholar
  8. 8.
    He, J., Lu, C., Yin, S.: The Design of CPG Control Module of the Bionic Mechanical Crab. In: Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, China (2006)Google Scholar
  9. 9.
    Billard, A., Ijspeert, A. J.: Biologically inspired neural controllers for motor control in a quadruped robot. In: IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000), vol. 6, pp. 6637(2000) Google Scholar
  10. 10.
    Heinen, M.R., Osório, F.S.: Applying Neural Networks to Control Gait of Simulated Robots. In: 10th Brazilian Symposium on Neural Networks, pp. 39–44 (2008)Google Scholar
  11. 11.
    Manoonpong, P., Wörgötter, F.: Neural Control and Learning for Versatile, Adaptive, Autonomous Behavior of Walking Machines. In: International Conference on Advanced Computer Theory and Engineering, pp. 24–28 (2008)Google Scholar
  12. 12.
    Valsalam, V.K., Miikkulainen, R.: Modular Neuroevolution for Multilegged Locomotion. In: GECCO 2008, pp. 265–272 (2008)Google Scholar
  13. 13.
    Heinen, M.R., Osório, F.S.: Morphology and Gait Control Evolution of Legged Robots. In: IEEE Latin American Robotic Symposium, pp. 111–116 (2008)Google Scholar
  14. 14.
    Brockmann, W., Maehle, E., Mösch, F.: Organic Fault-Tolerant Control Architecture for Robotic Applications. In: 4th IARP/IEEE-RAS/EURON Workshop on Dependable Robots in Human Environments, Nagoya University, Japan (2005)Google Scholar
  15. 15.
    Serra, R., Zanarini, G.: Complex Systems and Cognitive Processes. Springer, New York (1990)Google Scholar
  16. 16.
    As, G.C., Odell, J.: Agents and Emergence. ACM, Distributed Computing (1998)Google Scholar
  17. 17.
    Mainzer, K.: Self-Organization and Emergence in Complex Dynamical Systems, pp. 590–594. GI Jahrestagung (2004)Google Scholar
  18. 18.
    Randles, M., Lamb, D., Taleb-Bendiab, A.: Engineering Autonomic Systems Self-Organisation. In: Fifth IEEE Workshop on Engineering of Autonomic and Autonomous Systems, pp. 107–118 (2008)Google Scholar
  19. 19.
    Zheng, Z., Hu, G., Hu, B.: Phase Slips and Phase Synchronization of Coupled Oscillators. Physical Review Letters 81 (1998)Google Scholar
  20. 20.
    Buck, J.: Synchronous rhythmic flashing of fireflies, II. Quart. Rev. Biol. 63, 265–289 (1988)CrossRefGoogle Scholar
  21. 21.
    Bottani, S.: Pulse-Coupled Relaxation Oscillators: From Biological Synchronization to Self-Organized Criticality. Phy. Rev. Lett. 74(21)Google Scholar
  22. 22.
    Case, J.F., Strause, L.G.: Neurally controlled luminescent systems. In: Herring, P.J. (ed.) Bioluminiscence in Action, pp. 331–366 (1978)Google Scholar
  23. 23.
    Buonomicini, M., Magni, F.: Nervous control flashing in the firefly Luciola italica L. Archives italiennes de Biologie, 323–338 (1967)Google Scholar
  24. 24.
    Buck, J.: Studies on firefly: I. The effects of light and other agents on flashing in Photinus pyralis, with special reference and diurnal rhythm. Physiological Zoology, 45–58 (1937) Google Scholar
  25. 25.
    Magni, F.: Central and peripheral mechanisms in the modulation of flashing in the firefly Luciola italica L. Archives italiennes de Biologie, 339–360 (1967)Google Scholar
  26. 26.
    Hanson, F.E., Case, J.F., Buck, E., Buck, J.: Synchrony and flash entrainment in a New Guinea firefly. Science 174, 161–164 (1971)CrossRefGoogle Scholar
  27. 27.
    Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. Journal of Insect Physiology 15, 597–610 (1967)Google Scholar
  28. 28.
    Buck, J., Buck, E.: Synchronous fireflies. Scientific American 234, 74–85 (1976)CrossRefGoogle Scholar
  29. 29.
    Babaoglu, O., Binci, T., Jelasity, M., Montresor, A.: Firefly-inspired Heartbeat Synchronization in Overlay Networks. In: First International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2007, pp. 77–86 (2007)Google Scholar
  30. 30.
    Lessons in Implementing Bio-inspired Algorithms on Wireless Sensor Networks. In: NASA/ESA Conference on Adaptive Hardware and Systems, pp. 271–276 (2008)Google Scholar
  31. 31.
    Self-Organized Synchronization in Wireless Network. In: Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 329–338 (2008)Google Scholar
  32. 32.
    Wischmann, S., Hülse, M., Knabe, J., Pasemann, F.: Synchronization of internal neural rhythms in multi-robotic systems. Adaptive Behavior 14, 117–127 (2006)CrossRefGoogle Scholar
  33. 33.
    El Sayed Auf, A., Mösch, F., Litza, M.: How the six-legged walking machine OSCAR handles leg amputations. In: Workshop on Bio-inspired Cooperative and Adaptive Behaviours in Robots, Rome, Italy (2006)Google Scholar
  34. 34.
    Jakimovski, B., Litza, M., Mösch, F., El, S.A.: Development of an organic computing architecture for robot control. In: Informatik 2006 Workshop on Organic Computing - Status and Outlook, Dresden (2006)Google Scholar
  35. 35.
    Ferrell, C.: A Comparison of Three Insect Inspired Locomotion Controllers. Robotics and Autonomous Systems (RAS) 16, 135–159 (1995)CrossRefGoogle Scholar
  36. 36.
    Beer, R.D., Quinn, R.D., Chiel, H.J., Ritzmann, R.E.: Biologically inspired approaches to robotics what can we learn from insects. Communications of the ACM 40(3), 30–38 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bojan Jakimovski
    • 1
  • Benjamin Meyer
    • 1
  • Erik Maehle
    • 1
  1. 1.Institute of Computer EngineeringUniversity LübeckGermany

Personalised recommendations