JetBench: An Open Source Real-time Multiprocessor Benchmark

  • Muhammad Yasir Qadri
  • Dorian Matichard
  • Klaus D. McDonald Maier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5974)


Performance comparison among various architectures is generally attained by using standard benchmark tools. This paper presents JetBench, an Open Source OpenMP based multicore benchmark application that could be used to analyse real time performance of a specific target platform. The application is designed to be platform independent by avoiding target specific libraries and hardware counters and timers. JetBench uses jet engine parameters and thermodynamic equations presented in the NASA’s EngineSim program, and emulates a real-time jet engine performance calculator. The user is allowed to determine a flight profile with timing constraints, and adjust the number of threads. This paper discusses the structure of the application, thread distribution and its scalability on a custom symmetric multicore platform based on a cycle accurate full system simulator.


Real-time Multiprocessor Application Benchmark 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morton, G.: MSP430 Competitive Benchmarking. Texas Instruments (2005)Google Scholar
  2. 2.
    Dagum, L., Menon, R., Inc, S.G.: OpenMP: an industry standard API for shared-memory programming. IEEE Computational Science & Engineering 5, 46–55 (1998)CrossRefGoogle Scholar
  3. 3.
    Drepper, U., Molnar, I.: The native POSIX thread library for Linux. White Paper, Red Hat Inc. (2003)Google Scholar
  4. 4.
    Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing 22, 789–828 (1996)zbMATHCrossRefGoogle Scholar
  5. 5.
    Uniejewski, J.: SPEC Benchmark Suite: Designed for today’s advanced systems. SPEC Newsletter (1989)Google Scholar
  6. 6.
    Weicker, R.P.: An overview of common benchmarks. Computer 23, 65–75 (1990)CrossRefGoogle Scholar
  7. 7.
    Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Communications of the ACM 27, 1013–1030 (1984)CrossRefGoogle Scholar
  8. 8.
    Jin, H., Frumkin, M., Yan, J.: The OpenMP Implementation of NAS Parallel Benchmarks and Its Performance. NASA Ames Research Center (1999)Google Scholar
  9. 9.
    Gal-On, S., Levy, M.: Measuring Multicore Performance. Computer 41, 99–102 (2008)CrossRefGoogle Scholar
  10. 10.
    Leteinturier, P., Levy, M.: The Challenges of Next Generation Automotive Benchmarks. Journal of Passenger Car: Electronic and Electrical Systems 116, 155–160 (2007)Google Scholar
  11. 11.
    Zadeh, L.A.: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A. Zadeh, vol. 6. World Scientific, Singapore (1996)Google Scholar
  12. 12.
    Nemer, F., Cassé, H., Sainrat, P., Bahsoun, J.P., De Michiel, M.: Papabench: a free realtime benchmark. In: 6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis, Dresden, Germany (2006)Google Scholar
  13. 13.
    Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench: A free, commercially representative embedded benchmark suite. In: 4th IEEE International Workshop on Workload Characterization (WWC 2001), Austin, Texas, pp. 184–193 (2001)Google Scholar
  14. 14.
    Measuring Real-Time Performance of an RTOS: Express Logic Inc.Google Scholar
  15. 15.
    EngineSim Version 1.7a: NASA Glenn Research CenterGoogle Scholar
  16. 16.
    Berry, M., Chen, D., Koss, P., Kuck, D., Lo, S., Pang, Y., Pointer, L., Roloff, R., Sameh, A., Clementi, E.: The Perfect Club benchmarks: Effective performance evaluation of supercomputers. International Journal of High Performance Computing Applications 3, 5–40 (1989)CrossRefGoogle Scholar
  17. 17.
    Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation platform. IEEE Computer 35, 50–58 (2002)Google Scholar
  18. 18.
    Intel, Intel Concurrency Checker v2.1, Intel Corporation (2008)Google Scholar
  19. 19.
    Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS Joint Computer Conferences, Atlantic City, New Jersey, pp. 483–485 (1967)Google Scholar
  20. 20.
    Gunther, N.J.: A Simple Capacity Model of Massively Parallel Transaction Systems. In: CMG Conference, San Diego, California, pp. 1035–1044 (1993)Google Scholar
  21. 21.
    Gunther, N.J.: Guerrilla Capacity Planning: a Tactical Approach to Planning for Highly Scalable Applications and Services. Springer-Verlag New York Inc. (2007)Google Scholar
  22. 22.
    Gunther, N.J.: Unification of Amdahl’s law, LogP and other performance models for message-passing architectures. In: International Conference on Parallel and Distributed Computing Systems, Phoenix, AZ, pp. 569–576 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Muhammad Yasir Qadri
    • 1
  • Dorian Matichard
    • 2
  • Klaus D. McDonald Maier
    • 1
  1. 1.School of Computer Science and Electronic EngineeringUniversity of EssexUK
  2. 2.Ecole Nationale d’Electronique, Informatique et Radiocommunications de Bordeaux, ENSEIRB 

Personalised recommendations