MLP-Aware Instruction Queue Resizing: The Key to Power-Efficient Performance

  • Pavlos Petoumenos
  • Georgia Psychou
  • Stefanos Kaxiras
  • Juan Manuel Cebrian Gonzalez
  • Juan Luis Aragon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5974)

Abstract

Several techniques aiming to improve power-efficiency (measured as EDP) in out-of-order cores trade energy with performance. Prime exam ples are the techniques to resize the instruction queue (IQ). While most of them produce good results, they fail to take into account that changing the timing of memory accesses can have significant consequences on the memo ry-level parallelism (MLP) of the application and thus incur disproportional performance degradation. We propose a novel mechanism that deals with this realization by collecting fine-grain information about the maximum IQ resiz ing that does not affect the MLP of the program. This information is used to override the resizing enforced by feedback mechanisms when this resizing might reduce MLP. We compare our technique to a previously proposed non-MLP-aware management technique and our results show a significant in crease in EDP savings for most benchmarks of the SPEC2000 suite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buyuktosunoglu, A., Albonesi, D., Schuster, S., Brooks, D., Bose, P., Cook, P.: A Circuit Level Implementation of an Adaptive Issue Queue for Power–Aware Microprocessors. In: Proc. of Great Lakes Symposium on VLSI Design (2001)Google Scholar
  2. 2.
    Folegnani, D., González, A.: Energy-effective issue logic. In: Proc. of the International Symposium on Computer Architecture (2001)Google Scholar
  3. 3.
    Kucuk, G., Ghose, K., Ponomarev, D.V., Kogge, P.M.: Energy-Efficient Instruction Dispatch Buffer Design for Superscalar Processors. In: Proc. of the International Symposium on Low Power Electronics and Design (2001)Google Scholar
  4. 4.
    Eyerman, S., Eeckhout, L.: A Memory-Level Parallelism Aware Fetch Policy for SMT Processors. In: Proc. of the International Symposium on High Performance Computer Architecture (2007)Google Scholar
  5. 5.
    Glew, A.: MLP yes! ILP no! In: ASPLOS Wild and Crazy Ideas Session 1998 (1998)Google Scholar
  6. 6.
    Karkhanis, T.S., Smith, J.E.: A first-order uperscalar processor model. In: Proc. of the International Symposium on Computer Architecture (2004)Google Scholar
  7. 7.
    Chou, Y., Fahs, B., Abraham, S.: Microarchitecture optimizations for exploiting memory-level parallelism. In: Proc. of the International Symposium on Computer Architecture (2004)Google Scholar
  8. 8.
    Qureshi, M.K., Lynch, D.N., Mutlu, O., Patt, Y.N.: A Case for MLP-Aware Cache Replacement. In: Proc. of the International Symposium on Computer Architecture (2006)Google Scholar
  9. 9.
    Sohi, G.S., Vajapeyam, S.: Instruction Issue Logic for High-Performance, Interruptable Pipelined Processors. In: Proc. of the International Symposium on Computer Architecture (1987)Google Scholar
  10. 10.
    Ghose, K., Kamble, M.B.: Reducing Power in Superscalar Processor Caches using Subbanking, Multiple Line Buffers, and Bit Line Segmentation. In: Proc. of the International Symposium on Low Power Electronics and Design (1999)Google Scholar
  11. 11.
    Ponomarev, D., Kucuk, G., Ghose, K.: Dynamic Resizing of Superscalar Datapath Components for Energy Efficiency. IEEE Transactions on Computers (2006)Google Scholar
  12. 12.
    Iyer, A., Marculescu, D.: Power aware microarchitecture resource scaling. Design, Automation and Test in Europe (2001)Google Scholar
  13. 13.
    Rotenberg, E., Smith, J., Bennett, S.: Trace Cache: a Low Latency Approach to High Bandwidth Instruction Fetching. In: Proc. of the International Symposium on Microarchitecture (1996)Google Scholar
  14. 14.
    Tarjan, D., Thoziyoor, S., Jouppi, N.P.: CACTI 4.0. Hewlett-Packard Laboratories Technical Report #HPL-2006-86 (2006)Google Scholar
  15. 15.
    Brooks, D.M., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power analysis and optimizations. In: Proc. of the International Symposium Computer Architecture (2000)Google Scholar
  16. 16.
    Gonzalez, R., Horowitz, M.: Energy Dissipation in General Purpose Microprocessors. IEEE J. Solid-State Circuits (1996)Google Scholar
  17. 17.
    Zyuban, V., Brooks, D., Srinivasan, V., Gschwind, M., Bose, P., Strenski, P.N., Emma, P.G.: Integrated Analysis of Power and Performance of Pipelined Microprocessors. IEEE Transactions on Computers (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pavlos Petoumenos
    • 1
  • Georgia Psychou
    • 1
  • Stefanos Kaxiras
    • 1
  • Juan Manuel Cebrian Gonzalez
    • 2
  • Juan Luis Aragon
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of PatrasGreece
  2. 2.Computer Engineering DepartmentUniversity of MurciaSpain

Personalised recommendations