Advertisement

Abstract

MagicHaskeller is our inductive functional programming library based on systematic search. In this paper we introduce two recent improvements to MagicHaskeller, i.e. 1) clarification and extension to arbitrary-rank polymorphism of its algorithm, and 2) efficiency improvement in its filtration algorithm that removes redundancy in the search results.

Keywords

Inference Rule Functional Type Recent Improvement Functional Programming Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Claessen and Hughes(2000)]
    Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell programs. In: ICFP 2000: Proceedings of the 5th ACM SIGPLAN International Conference on Functional Programming, pp. 268–279. ACM, New York (2000)CrossRefGoogle Scholar
  2. [Dyckhoff(1992)]
    Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic 57, 795–807 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [Herbelin(1995)]
    Herbelin, H.: A lambda-calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. [Hofmann et al.(2009)Hofmann, Kitzelmann, and Schmid]
    Hofmann, M., Kitzelmann, E., Schmid, U.: A unifying framework for analysis and evaluation of inductive programming systems. In: Proceedings of the Second Conference on Artificial General Intelligence (2009)Google Scholar
  5. [Hudelmaier(1992)]
    Hudelmaier, J.: Bounds on cut-elimination in intuitionistic propositional logic. Archive for Mathematical Logic 31, 331–354 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [Katayama(2006)]
    Katayama, S.: Library for systematic search for expressions and its efficiency evaluation. WSEAS Transactions on Computers 12(5), 3146–3153 (2006)Google Scholar
  7. [Katayama(2005a)]
    Katayama, S.: Systematic search for lambda expressions. In: Sixth Symposium on Trends in Functional Programming, pp. 195–205 (2005)Google Scholar
  8. [Katayama(2008)]
    Katayama, S.: Efficient exhaustive generation of functional programs using monte-carlo search with iterative deepening. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS (LNAI), vol. 5351, pp. 199–210. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. [Katayama(2005b)]
  10. [Katayama(2007)]
    Katayama, S.: Systematic search for lambda expressions. In: Trends in Functional Programming, vol. 6, pp. 111–126, Intellect (2007)Google Scholar
  11. [Kiselyov(2005)]
    Kiselyov, O.: Reversing haskell typechecker: converting from undefined to defined (2005), http://okmij.org/ftp/Haskell/types.html#de-typechecker
  12. [Kitzelmann(2007)]
    Kitzelmann, E.: Data-driven induction of recursive functions from input/output-examples. In: AAIP 2007: Proceedings of the Workshop on Approaches and Applications of Inductive Programming, pp. 15–26 (2007)Google Scholar
  13. [Liang et al.(1995)Liang, Hudak, and Jones]
    Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters. In: POPL 1995: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (1995)Google Scholar
  14. [Martin(1971)]
    Martin, W.A.: Determining the equivalence of algebraic expressions by hash coding. Journal of the Association for Computing Machinery 18(4), 549–558 (1971)zbMATHGoogle Scholar
  15. [Olsson(1995)]
    Olsson, R.: Inductive functional programming using incremental program transformation. Artificial Intelligence 74(1), 55–81 (1995)CrossRefGoogle Scholar
  16. [Spivey(2000)]
    Spivey, M.: Combinators for breadth-first search. Journal of Functional Programming 10(4), 397–408 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [Spivey(2006)]
    Spivey, M.: Algebras for combinatorial search. In: Workshop on Mathematically Structured Functional Programming (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Susumu Katayama
    • 1
  1. 1.University of MiyazakiMiyazakiJapan

Personalised recommendations