Advertisement

Generalisation Operators for Lists Embedded in a Metric Space

  • V. Estruch
  • C. Ferri
  • J. Hernández-Orallo
  • M. J. Ramírez-Quintana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5812)

Abstract

In some application areas, similarities and distances are used to calculate how similar two objects are in order to use these measurements to find related objects, to cluster a set of objects, to make classifications or to perform an approximate search guided by the distance. In many other application areas, we require patterns to describe similarities in the data. These patterns are usually constructed through generalisation (or specialisation) operators. For every data structure, we can define distances. In fact, we may find different distances for sets, lists, atoms, numbers, ontologies, web pages, etc. We can also define pattern languages and use generalisation operators over them. However, for many data structures, distances and generalisation operators are not consistent. For instance, for lists (or sequences), edit distances are not consistent with regular languages, since, for a regular pattern such as *a, the covered set of lists might be far away in terms of the edit distance (e.g. bbbbbba and aa). In this paper we investigate the way in which, given a pattern language, we can define a pair of generalisation operator and distance which are consistent. We define the notion of (minimal) distance-based generalisation operators for lists. We illustrate positive results with two different pattern languages.

Keywords

Distance-based methods inductive operators induction with distances list-based representations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowers, A.F., Giraud-Carrier, C.G., Lloyd, J.W.: Classification of individuals with complex structure. In: Proc. of the 17th International Conference on Machine Learning (ICML 2000), pp. 81–88. Morgan Kaufmann, San Francisco (2000)Google Scholar
  2. 2.
    Edgar, G.A.: Measure, Topology and Fractal Geometry. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  3. 3.
    Estruch, V.: Bridging the gap between distance and generalisation: Symbolic learning in metric spaces. PhD Thesis, DSIC-UPV (2008), http://www.dsic.upv.es/~vestruch/thesis.pdf
  4. 4.
    Estruch, V., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Distance based generalisation. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 87–102. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Estruch, V., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Distance based generalisation for graphs. In: Proc. Work. of Machine and Learning with Graphs, pp. 133–140 (2006)Google Scholar
  6. 6.
    Estruch, V., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Minimal distance-based generalisation operators for first-order objects. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 169–183. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Incremental learning of functional logic programs. In: Kuchen, H., Ueda, K. (eds.) FLOPS 2001. LNCS, vol. 2024, pp. 233–247. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 26(2), 147–160 (1950)MathSciNetGoogle Scholar
  9. 9.
    Hernández-Orallo, J., Ramírez-Quintana, M.J.: Inverse narrowing for the induction of functional logic programs. In: 1998 Joint Conference on Declarative Programming, APPIA-GULP-PRODE 1998, A Coruña, Spain, July 20-23, pp. 379–392 (1998)Google Scholar
  10. 10.
    Hernández-Orallo, J., Ramírez-Quintana, M.J.: A strong complete schema for inductive functional logic programming. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 116–127. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10, 707–710 (1966)MathSciNetGoogle Scholar
  12. 12.
    Lloyd, J.W.: Learning comprehensible theories from structured data. In: Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS (LNAI), vol. 2600, pp. 203–225. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Muggleton, S.H.: Inductive logic programming: Issues, results, and the challenge of learning language in logic. Artificial Intelligence 114(1-2), 283–296 (1999)zbMATHCrossRefGoogle Scholar
  14. 14.
    Olsson, R.: Inductive functional programming using incremental program transformation. Artifificial Intelligence 74(1), 55–81 (1995)CrossRefGoogle Scholar
  15. 15.
    Rissanen, J.: Hypothesis selection and testing by the MDL principle. The Computer Journal 42(4), 260–269 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Schmid, U.: Inductive synthesis of Functional Programs-Universal Planning, Folding of Finite Programs, and Schema Abstraction by Analogical Reasoning. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  17. 17.
    Swamidass, S.H., Chen, J., Bruand, J., Phung, P., Ralaivola, L., Baldi, P.: Kernels for small molecules and the prediction of mutagenecity, toxicity and anti-cancer activity. Bioinformatics 21, 359–368 (2005)CrossRefGoogle Scholar
  18. 18.
    Rivest, R., Cormen, T.H., Leiserson, C., Stein, C. (eds.): Introduction to Algorithms. MIT Press, Cambridge (2000)Google Scholar
  19. 19.
    Wallace, C.S., Dowe, D.L.: Minimum Message Length and Kolmogorov Complexity. Computer Journal 42(4), 270–283 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • V. Estruch
    • 1
  • C. Ferri
    • 1
  • J. Hernández-Orallo
    • 1
  • M. J. Ramírez-Quintana
    • 1
  1. 1.DSICUniv. Politècnica de ValènciaValènciaSpain

Personalised recommendations