Approaches to the Selection of Relevant Concepts in the Case of Noisy Data

  • Mikhail Klimushkin
  • Sergei Obiedkov
  • Camille Roth
Conference paper

DOI: 10.1007/978-3-642-11928-6_18

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5986)
Cite this paper as:
Klimushkin M., Obiedkov S., Roth C. (2010) Approaches to the Selection of Relevant Concepts in the Case of Noisy Data. In: Kwuida L., Sertkaya B. (eds) Formal Concept Analysis. ICFCA 2010. Lecture Notes in Computer Science, vol 5986. Springer, Berlin, Heidelberg

Abstract

Concept lattices built on noisy data tend to be large and hence hard to interpret. We introduce several measures that can be used in selecting relevant concepts and discuss how they can be combined together. We study their performance in a series of experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mikhail Klimushkin
    • 1
  • Sergei Obiedkov
    • 1
  • Camille Roth
    • 2
  1. 1.Higher School of EconomicsMoscowRussia
  2. 2.CAMS (CNRS/EHESS), Centre d’Analyse et de Mathématique Sociales, EHESSParisFrance

Personalised recommendations