Approaches to the Selection of Relevant Concepts in the Case of Noisy Data

  • Mikhail Klimushkin
  • Sergei Obiedkov
  • Camille Roth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5986)


Concept lattices built on noisy data tend to be large and hence hard to interpret. We introduce several measures that can be used in selecting relevant concepts and discuss how they can be combined together. We study their performance in a series of experiments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bayardo Jr., R., Goethals, B., Zaki, M. (eds.): Proc. of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI 2004). (2004)Google Scholar
  2. 2.
    Boulicaut, J.F., Besson, J.: Actionability and formal concepts: A data mining perspective. In: Medina, Obiedkov [7], pp. 14–31Google Scholar
  3. 3.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)zbMATHGoogle Scholar
  4. 4.
    Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining results via swap randomization. ACM Trans. Knowl. Discov. Data 1(3), 14 (2007)CrossRefGoogle Scholar
  5. 5.
    Jay, N., Kohler, F., Napoli, A.: Analysis of social communities with iceberg and stability-based concept lattices. In: Medina, Obiedkov [7], pp. 258–272Google Scholar
  6. 6.
    Kuznetsov, S., Obiedkov, S., Roth, C.: Reducing the representation complexity of lattice-based taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 241–254. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Medina, R., Obiedkov, S. (eds.): ICFCA 2008. LNCS (LNAI), vol. 4933. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  8. 8.
    Newman, M.E.J., Strogatz, S., Watts, D.: Random graphs with arbitrary degree distributions and their applications. Physical Review E 64(026118) (2001)Google Scholar
  9. 9.
    Roth, C., Obiedkov, S., Kourie, D.G.: Towards concise representation for taxonomies of epistemic communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek, R. (eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 240–255. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC. Data & Knowledge Engineering 42, 189–222 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mikhail Klimushkin
    • 1
  • Sergei Obiedkov
    • 1
  • Camille Roth
    • 2
  1. 1.Higher School of EconomicsMoscowRussia
  2. 2.CAMS (CNRS/EHESS), Centre d’Analyse et de Mathématique Sociales, EHESSParisFrance

Personalised recommendations