Efficient CRT-RSA Decryption for Small Encryption Exponents

  • Subhamoy Maitra
  • Santanu Sarkar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5985)

Abstract

Consider CRT-RSA with the parameters p, q, e, d p , d q , where p, q are secret primes, e is the public encryption exponent and d p , d q are the private decryption exponents. We present an efficient method to select CRT-RSA parameters in such a manner so that the decryption becomes faster for small encryption exponents. This is the most frequently used situation for application of RSA in commercial domain. Our idea is to choose e and the factors (with low Hamming weight) of d p , d q first and then applying the extended Euclidean algorithm, we obtain p, q of same bit size. For small e, we get an asymptotic reduction of the order of \({{1}\over{3}}\) in the decryption time compared to standard CRT-RSA parameters for large N = pq. In case of practical parameters, with 1024 bits N and e = 216 + 1, we achieve a reduction of more than 27%. Extensive security analysis is presented for our selected parameters and benchmark examples are also provided.

Keywords

RSA CRT-RSA Key Generation Efficient Decryption Primes Exponents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the AMS 46(2), 203–213 (1999)MATHMathSciNetGoogle Scholar
  4. 4.
    Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less Than N 0.292. IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)Google Scholar
  6. 6.
    Coppersmith, D.: Small Solutions to Polynomial Equations and Low Exponent Vulnerabilities. Journal of Cryptology 10(4), 223–260 (1997)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Durfee, G., Nguyen, P.: Cryptanalysis of the RSA schemes with short secret exponents from Asiacrypt 1999. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 14–29. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks on RSA up to Full Size Exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Galbraith, S., Heneghan, C., McKee, J.: Tunable Balancing RSA. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 280–292. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Galbraith, S., Heneghan, C., McKee, J.: Tunable Balancing RSA, http://www.isg.rhul.ac.uk/~sdg/full-tunable-rsa.pdf
  11. 11.
    Jochemsz, E., May, A.: A Polynomial Time Attack on RSA with Private CRT-Exponents Smaller Than N 0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 395–411. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Lenstra, A.: Generating RSA moduli with a predetermined portion. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve. Springer, Heidelberg (1993)MATHCrossRefGoogle Scholar
  14. 14.
    May, A.: Cryptanalysis of unbalanced RSA with small CRT-exponent. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)MATHGoogle Scholar
  16. 16.
    Quisquater, J.-J., Couvreur, C.: Fast decipherment algorithm for RSA public-key cryptosystem. Electronic Letters 18, 905–907 (1982)CrossRefGoogle Scholar
  17. 17.
    Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of ACM 21(2), 158–164 (1978)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Stinson, D.R.: Some baby-step-giant-step algorithms for the low Hamming weight discrete logarithm problem. Math. Comp. 71(237), 379–391 (2001)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Stinson, D.R.: Cryptography - Theory and Practice, 2nd edn. Chapman & Hall/CRC, Boca Raton (2002)Google Scholar
  20. 20.
    Sun, H.M., Yang, C.T.: RSA with Balanced Short Exponents and Its Application to Entity Authentication. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 199–215. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Sun, H.-M., Wu, M.-E.: Design of Rebalanced RSA-CRT for Fast Encryption. In: Proceedings of Information Security Conference, pp. 16–27 (2005), http://eprint.iacr.org/2005/053
  22. 22.
    Sun, H.-M., Hinek, M.J., Wu, M.-E.: On the Design of Rebalanced RSA-CRT, http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-35.pdf
  23. 23.
    Verheul, E., van Tilborg, H.: Cryptanalysis of less short RSA secret exponents. Applicable Algebra in Engineering, Communication and Computing 18, 425–435 (1997)CrossRefGoogle Scholar
  24. 24.
    de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Algebra in Engineering, Communication and Computing 13, 17–28 (2002)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Wiener, M.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on Information Theory 36(3), 553–558 (1990)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Subhamoy Maitra
    • 1
  • Santanu Sarkar
    • 1
  1. 1.Indian Statistical InstituteApplied Statistics UnitKolkataIndia

Personalised recommendations