Rebound Attacks on the Reduced Grøstl Hash Function

  • Florian Mendel
  • Christian Rechberger
  • Martin Schläffer
  • Søren S. Thomsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5985)

Abstract

Grøstl is one of 14 second round candidates of the NIST SHA-3 competition. Cryptanalytic results on the wide-pipe compression function of Grøstl-256 have already been published. However, little is known about the hash function, arguably a much more interesting cryptanalytic setting. Also, Grøstl-512 has not been analyzed yet. In this paper, we show the first cryptanalytic attacks on reduced-round versions of the Grøstl hash functions. These results are obtained by several extensions of the rebound attack. We present a collision attack on 4/10 rounds of the Grøstl-256 hash function and 5/14 rounds of the Grøstl-512 hash functions. Additionally, we give the best collision attack for reduced-round (7/10 and 7/14) versions of the compression function of Grøstl-256 and Grøstl-512.

Keywords

hash function cryptanalysis collisions rebound attack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daemen, J., Rijmen, V.: Understanding Two-Round Differentials in AES. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Fouque, P.A., Stern, J., Zimmer, S.: Cryptanalysis of Tweaked Versions of SMASH and Reparation. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) Selected Areas in Cryptography. LNCS, vol. 5381, pp. 136–150. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST (2008), http://www.groestl.info
  5. 5.
    Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-like permutations. Cryptology ePrint Archive, Report 2009/531 (2009), http://eprint.iacr.org/
  6. 6.
    Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Cryptanalysis of the Whirlpool Hash Function (manuscript)Google Scholar
  7. 7.
    Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In: Rijmen, V. (ed.) SAC 2009. LNCS, vol. 5867, pp. 16–35. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    National Institute of Standards and Technology: FIPS PUB 197, Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197, U.S. Department of Commerce (November 2001)Google Scholar
  11. 11.
    National Institute of Standards and Technology: Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register Notice (November 2007), http://csrc.nist.gov
  12. 12.
    Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.M., Szekely, A.: High-Speed Hardware Implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, J.H., Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. Cryptology ePrint Archive, Report 2009/510 (2009), http://eprint.iacr.org/
  14. 14.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Florian Mendel
    • 1
  • Christian Rechberger
    • 2
  • Martin Schläffer
    • 1
  • Søren S. Thomsen
    • 3
  1. 1.Institute for Applied Information Processing and Communications (IAIK)Graz University of TechnologyGrazAustria
  2. 2.Dept. of Electrical Engineering ESAT/COSICK.U. Leuven, and Interdisciplinary Institute for BroadBand Technology (IBBT)HeverleeBelgium
  3. 3.Department of MathematicsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations