MaxMAC: A Maximally Traffic-Adaptive MAC Protocol for Wireless Sensor Networks

  • Philipp Hurni
  • Torsten Braun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5970)


Energy efficiency is a major concern in the design of Wireless Sensor Networks (WSNs) and their communication protocols. As the radio transceiver typically accounts for a major portion of a WSN node’s power consumption, researchers have proposed Energy-Efficient Medium Access (E 2-MAC) protocols that switch the radio transceiver off for a major part of the time. Such protocols typically trade off energy-efficiency versus classical quality of service parameters (throughput, latency, reliability). Today’s E 2-MAC protocols are able to deliver little amounts of data with a low energy footprint, but introduce severe restrictions with respect to throughput and latency. Regrettably, they yet fail to adapt to varying traffic load at run-time.

This paper presents MaxMAC, an E 2-MAC protocol that targets at achieving maximal adaptivity with respect to throughput and latency. By adaptively tuning essential parameters at run-time, the protocol reaches the throughput and latency of energy-unconstrained CSMA in high-traffic phases, while still exhibiting a high energy-efficiency in periods of sparse traffic. The paper compares the protocol against a selection of today’s E 2-MAC protocols and evaluates its advantages and drawbacks.


Wireless Sensor Networks Energy Efficient Medium Access Control Traffic Adaptivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: CodeBlue: An ad hoc Sensor Network Infrastructure for Emergency Medical Care. In: MobiSys 2004 Workshop on Applications of Mobile Embedded Systems (2004)Google Scholar
  2. 2.
    Gao, T., et al.: The Advanced Health and Disaster Aid Network: A Light-weight Wireless Medical System for Triage. IEEE Transactions on Biomedical Circuits and Systems (2007)Google Scholar
  3. 3.
    Akyildiz, I., Melodia, T., Chowdhury, K.: Wireless Multimedia Sensor Networks: A Survey. Elsevier Computer Networks (2007)Google Scholar
  4. 4.
    Van Dam, T., Langendoen, K.: An Adaptive Energy Efficient MAC Protocol for Wireless Sensor Networks (TMAC). In: ACM SenSys (2003)Google Scholar
  5. 5.
    Ye, W., Heidemann, J., Estrin, D.: An Energy Efficient MAC protocol for Wireless Sensor Networks. In: INFOCOM (2002)Google Scholar
  6. 6.
    Buettner, M., Gary, V.Y., Anderson, E., Han, R.: X-MAC: A Short Preamble MAC Protocol for Duty-cycled Wireless Sensor Networks. In: ACM SenSys (2006)Google Scholar
  7. 7.
    Lee, S.H., Park, J.H., Choi., L.: AMAC: Traffic-Adaptive Sensor Network MAC Protocol through Variable Duty-Cycle Operations. In: ICC (2007)Google Scholar
  8. 8.
    Rhee, I., Ajit Warrier, M.A., Min, J.: Z-MAC: a hybrid MAC for Wireless Sensor Networks. In: ACM SenSys (2005)Google Scholar
  9. 9.
    Ringwald, M., Roemer, K.: BurstMAC: An Efficient MAC Protocol for Correlated Traffic Bursts. In: IEEE Conference on Networked Sensing Systems, INSS (2009)Google Scholar
  10. 10.
    Polastre, J., Hill, J., Culler, D.: Versatile Low Power Media Access for Wireless Sensor Networks. In: ACM SenSys (2004)Google Scholar
  11. 11.
    El-Hoiydi, A., Decotignie, J.D.: WiseMAC: An Ultra Low Power MAC Protocol for Multihop Wireless Sensor Networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 18–31. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    El-Hoiydi, A.: Energy Efficient Medium Access Control for Wireless Sensor Networks, PhD Thesis EPFL Lausanne (2005)Google Scholar
  13. 13.
    Hurni, P., Braun, T.: On the Adaptivity of Today’s Energy-Efficient MAC Protocols under varying Traffic Conditions. In: IEEE Conference on Ultra-Modern Technologies, ICUMT (2009)Google Scholar
  14. 14.
    Varga, A.: The OMNeT++ Discrete Event Simulation System. In: European Simulation Multiconference (2001),
  15. 15.
    Rappaport, T.S.: Wireless Communications: Principles & Practise, 2nd edn. Prentice Hall, Englewood Cliffs (2001)Google Scholar
  16. 16.
    Kuntz, A., Schmidt-Eisenlohr, F., Graute, O., Hartenstein, H., Zitterbart, M.: Introducing Probabilistic Radio Propagation Models in OMNeT++ MF and Cross Validation Check with NS-2. In: 1st Intl. Workshop on OMNeT++ (2008)Google Scholar
  17. 17.
    Feeney, L., Nilsson, M.: Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking Environment. In: INFOCOM (2001)Google Scholar
  18. 18.
    Texas Instruments CC1020: Single-Chip FSK/OOK CMOS RF TransceiverGoogle Scholar
  19. 19.
    Baar, M., Koeppe, E., Liers, A., Schiller, J.: The ScatterWeb MSB-430 Platform for Wireless Sensor Networks. In: SICS Contiki Workshop (2007)Google Scholar
  20. 20.
    Ammer, J., Rabaey, J.: The Energy-Per-Useful-Bit Metric for Evaluatling and Optimizing Sensor Network Physical Layers. In: SECON (2006)Google Scholar
  21. 21.
    Hull, B., Jamieson, K., Balakrishnan, H.: Mitigating Congestion in Wireless Sensor Networks. In: ACM SenSys (2004)Google Scholar
  22. 22.
    Sun, Y., Du, S., Gurewitz, O., Johnson, D.B.: DW-MAC: a Low Latency, Energy Efficient Demand-Wakeup MAC protocol for Wireless Sensor Networks. In: ACM MobiHoc (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Philipp Hurni
    • 1
  • Torsten Braun
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsUniversity of Bern 

Personalised recommendations