Advertisement

Making Sensornet MAC Protocols Robust against Interference

  • Carlo Alberto Boano
  • Thiemo Voigt
  • Nicolas Tsiftes
  • Luca Mottola
  • Kay Römer
  • Marco Antonio Zúñiga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5970)

Abstract

Radio interference may lead to packet losses, thus negatively affecting the performance of sensornet applications. In this paper, we experimentally assess the impact of external interference on state-of-the-art sensornet MAC protocols. Our experiments illustrate that specific features of existing protocols, e.g., hand-shaking schemes preceding the actual data transmission, play a critical role in this setting. We leverage these results by identifying mechanisms to improve the robustness of existing MAC protocols under interference. These mechanisms include the use of multiple hand-shaking attempts coupled with packet trains and suitable congestion backoff schemes to better tolerate interference. We embed these mechanisms within an existing X-MAC implementation and show that they considerably improve the packet delivery rate while keeping the power consumption at a moderate level.

Keywords

Wireless Sensor Network Queue Size Clear Channel Assessment Radio Interference Packet Delivery Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boano, C.A., He, Z., Li, Y., Voigt, T., Zuniga, M., Willig, A.: Controllable Radio Interference for Experimental and Testing Purposes in Wireless Sensor Networks. In: Proc. of the 4th Workshop on Practical Issues in Building Sensor Network Applications (SenseApp), Zurich, Switzerland, October 2009. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  2. 2.
    Buettner, M., Yee, V., Anderson, E., Han, R.: X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In: ACM SenSys (2006)Google Scholar
  3. 3.
    Musaloiu-E., R., Liang, C.-J.M., Terzis, A.: Koala: Ultra-Low Power Data Retrieval in Wireless Sensor Networks. In: IPSN 2008 (2008)Google Scholar
  4. 4.
    TinyOS Community Forum. TinyOS TEP 126 - CC2420 radio stack, http://www.tinyos.net/tinyos-2.x/doc/html/tep126.html
  5. 5.
    Voigt, T., Österlind, F.: CoReDac: Collision-free command-response data collection. In: 13th IEEE Conference on Emerging Technologies and Factory Automation, Hamburg, Germany (September 2008)Google Scholar
  6. 6.
    Lu, G., Krishnamachari, B., Raghavendra, C.: An adaptive energy-efficient and low-latency mac for data gathering in wireless sensor networks. In: International Parallel and Distributed Processing Symposium, IPDPS (2004)Google Scholar
  7. 7.
    Bertocco, M., Gamba, G., Sona, A.: Experimental Optimization of CCA Thresholds in Wireless Sensor Networks in the Presence of Interference. In: Proc. of IEEE Workshop on ElectroMagnetic Compatibility (IEEE EMC) (June 2007)Google Scholar
  8. 8.
    Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sensor networks for habitat monitoring. In: First ACM Workshop on Wireless Sensor Networks and Applications (WSNA 2002) (September 2002)Google Scholar
  9. 9.
    Tolle, G., et al.: A macroscope in the redwoods. In: SenSys, pp. 51–63 (2005)Google Scholar
  10. 10.
    Dunkels, A., Österlind, F., Tsiftes, N., He, Z.: Software-based on-line energy estimation for sensor nodes. In: Proceedings of the 4th Workshop on Embedded Networked Sensors (EmNetS), Cork, Ireland (June 2007)Google Scholar
  11. 11.
    Chintalapudi, K.K., Venkatraman, L.: On the design of mac protocols for low-latency hard real-time discrete control applications over 802.15.4 hardware. In: The 7th Conf. on Information Processing in Sensor Networks (IPSN) (April 2008)Google Scholar
  12. 12.
    Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: ACM SenSys (2004)Google Scholar
  13. 13.
    El-Hoiydi, A., Decotignie, J.D.: Wisemac: An ultra low power mac protocol for the downlink of infrastructure wireless sensor networks. In: ISCC (June 2004)Google Scholar
  14. 14.
    Moss, D., Levis, P.: Box-macs: Exploiting physical and link layer boundaries in low-power networking. Technical Report SING-08-00, Stanford University (2002)Google Scholar
  15. 15.
    Tassiulas, L., Sarkar, S.: Maxmin fair scheduling in wireless ad hoc networks. IEEE Journal on Selected Areas in Communications 23(1), 163–173 (2005)CrossRefGoogle Scholar
  16. 16.
    Chen, L., Low, S.H., Doyle, J.C.: Joint congestion control and media access control design for ad hoc wireless networks. In: INFOCOM (2005)Google Scholar
  17. 17.
    Yi, Y., Shakkottai, S.: Hop-by-hop congestion control over a wireless multi-hop network. IEEE/ACM Transactions On Networking 15(1), 133–144 (2007)CrossRefGoogle Scholar
  18. 18.
    Yi, Y., de Veciana, G., Shakkottai, S.: On optimal MAC scheduling with physical interference. In: INFOCOM (2007)Google Scholar
  19. 19.
    Zhou, G., He, T., Stankovic, J.A., Abdelzaher, T.: RID: Radio interference detection in wireless sensor networks. In: INFOCOM (2005)Google Scholar
  20. 20.
    Zhou, G., et al.: Models and solutions for radio irregularity in wireless sensor networks. ACM Trans. Sen. Netw. 2(2), 221–262 (2006)CrossRefGoogle Scholar
  21. 21.
    Rangwala, S., Gummadi, R., Govindan, R., Psounis, K.: Interference-aware fair rate control in wireless sensor networks. In: ACM SIGCOMM (2006)Google Scholar
  22. 22.
    Musaloiu-E, R., Terzis, A.: Minimising the effect of wifi interference in 802.15.4 wireless sensor networks. Journal of Sensor Networks 3, 43–54 (2007)Google Scholar
  23. 23.
    Hauer, J., Handziski, V., Wolisz, A.: Experimental study of the impact of wlan interference on ieee 802.15.4 body area networks. In: Roedig, U., Sreenan, C.J. (eds.) EWSN 2009. LNCS, vol. 5432, pp. 17–32. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Yuan, Z., et al.: A backoff copying scheme for contention resolution in wireless sensor networks. In: Wintech (September 2009)Google Scholar
  25. 25.
    Athanasopoulos, A., et al.: 802.15.4: The effect of different back-off schemes on power and qos characteristics. In: IEEE ICWMC (2007)Google Scholar
  26. 26.
    Jamieson, K., Balakrishnan, H., Tay, Y.C.: Sift: a mac protocol for event-driven wireless sensor networks. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 260–275. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carlo Alberto Boano
    • 1
  • Thiemo Voigt
    • 2
  • Nicolas Tsiftes
    • 2
  • Luca Mottola
    • 2
  • Kay Römer
    • 1
  • Marco Antonio Zúñiga
    • 3
  1. 1.Institut für Technische InformatikUniversität zu LübeckLübeckGermany
  2. 2.Swedish Institute of Computer Science (SICS)KistaSweden
  3. 3.Digital Enterprise Research Institute (DERI)GalwayIreland

Personalised recommendations