Mitigating the Effects of RF Interference through RSSI-Based Error Recovery

  • Jan-Hinrich Hauer
  • Andreas Willig
  • Adam Wolisz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5970)


On a common sensor node platform (Telos) we sample RSSI with high frequency during packet reception. We find that a packet collision (RF interference) often manifests as a measurable, temporal increase in RSSI. We investigate how the receiver can use this information to detect interference and, through temporal correlation, estimate the bit error positions in a corrupted packet. In an experimental study in two testbeds and several realistic BAN scenarios we show that a simple threshold-based algorithm often succeeds in estimating a large fraction of the bit error positions correctly. We develop an ARQ scheme that utilizes the error estimates to reduce the size of retransmitted packets. For this ARQ scheme we present an analytical model and verify it experimentally. Our results indicate that in comparison with a standard Send-and-Wait ARQ the expected number of bits per transmission can be reduced significantly (in our measurements by up to 14.7 %).


Interference Mitigation Packet Combining ARQ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahl, P., Chandra, R., Moscibroda, T., Murty, R., Welsh, M.: White space networking with wi-fi like connectivity. In: SIGCOMM 2009: Proceedings of the ACM SIGCOMM 2009 conference on Data communication, pp. 27–38. ACM, New York (2009)CrossRefGoogle Scholar
  2. 2.
    Dairaseh, A.-G.A., Baum, C.W.: Methods for packet combining in HARQ systems over bursty channels. MONET - Mobile Networks and Applications 2, 213–224 (1997)CrossRefGoogle Scholar
  3. 3.
    Demirbas, M., Soysal, O., Hussain, M.: A singlehop collaborative feedback primitive for wireless sensor networks, April 2008, pp. 2047–2055 (2008)Google Scholar
  4. 4.
    Liu, H., Ma, H., El Zarki, M., Gupta, S.: Error control schemes for networks: an overview. Mob. Netw. Appl. 2(2), 167–182 (1997)CrossRefGoogle Scholar
  5. 5.
    Abusubaih, M., Rathke, B., Wolisz, A.: Packet loss discrimination in multi-cell 802.11 wireless LANs. Technical Report TKN-08-010, Telecommunication Networks Group, Technische Universität Berlin (October 2008)Google Scholar
  6. 6.
    Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interference modeling and scheduling in low-power wireless networks. In: SenSys 2008: Proceedings of the 6th ACM conference on Embedded network sensor systems, pp. 141–154. ACM, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Maheshwari, R., Jain, S., Das, S.R.: On estimating joint interference for concurrent packet transmissions in low power wireless networks. In: WiNTECH 2008: Proceedings of the third ACM international workshop on Wireless network testbeds, experimental evaluation and characterization, New York, NY, USA (2008)Google Scholar
  8. 8.
    Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  9. 9.
    Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: SenSys 2004: Proceedings of the 2nd international conference on Embedded networked sensor systems, Baltimore, MD, USA, pp. 95–107. ACM, New York (2004)CrossRefGoogle Scholar
  10. 10.
    Rayanchu, S., Mishra, A., Agrawal, D., Saha, S., Banerjee, S.: Diagnosing wireless packet losses in 802.11: Separating collision from weak signal. In: IEEE INFOCOM 2008. The 27th Conference on Computer Communications, pp. 735–743 (2008)Google Scholar
  11. 11.
    Sentilla Corporation. Tmote sky datasheet,
  12. 12.
    Srinivasan, K., Levis, P.: RSSI is under appreciated. In: Proceedings of the Third Workshop on Embedded Networked Sensors (EmNets) (May 2006)Google Scholar
  13. 13.
    Texas Instruments. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver (April 2002),
  14. 14.
    Valentin, S., Volkhausen, T., Onat, F.A., Yanikomeroglu, H., Karl, H.: Enabling partial forwarding by decoding-based one and two-stage selective cooperation. In: Proc. IEEE Cognitive and Cooperative Wireless Networks (CoCoNet) co-located with IEEE ICC, Beijing, China (May 2008)Google Scholar
  15. 15.
    Handziski, V., Köpke, A., Willig, A., Wolisz, A.: TWIST: A scalable and reconfigurable testbed for wireless indoor experiments with sensor network. In: Proc. of the 2nd Intl. Workshop on Multi-hop Ad Hoc Networks: from Theory to Reality (RealMAN 2006), Florence, Italy (May 2006)Google Scholar
  16. 16.
    Werner-Allen, G., Swieskowski, P., Welsh, M.: MoteLab: a wireless sensor network testbed. In: IPSN 2005: Proceedings of the 4th international symposium on Information processing in sensor networks, Piscataway, NJ, USA, p. 68. IEEE Press, Los Alamitos (2005)Google Scholar
  17. 17.
    Willig, A.: Memory-efficient segment-based packet-combining schemes in face of deadlines. IEEE Transactions on Industrial Informatics 5(3), 338–350 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jan-Hinrich Hauer
    • 1
  • Andreas Willig
    • 1
  • Adam Wolisz
    • 1
  1. 1.Telecommunication Networks GroupTechnische Universität BerlinGermany

Personalised recommendations