Combining Key Frame Based Motion Design with Controlled Movement Execution

  • Stefan Czarnetzki
  • Sören Kerner
  • Daniel Klagges
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5949)


This article presents a novel approach for motion pattern generation for humanoid robots combining the intuitive specification via key frames and the robustness of a ZMP stability controller. Especially the execution of motions interacting with the robot’s environment tends to result in very different stability behavior depending on the exact moment, position and force of interaction, thus providing problems for the classical replay of prerecorded motions. The proposed method is applied to several test cases including the design of kicking motions for humanoid soccer robots and evaluated in real world experiments which clearly show the benefit of the approach.


Humanoid Robot Biped Robot Zero Moment Point Motion Primitive Robot Soccer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kanda, T., Ishiguro, H., Imai, M., Ono, T.: Development and evaluation of interactive humanoid robots. Proceedings of the IEEE 92(11), 1839–1850 (2004)CrossRefGoogle Scholar
  2. 2.
    Sugihara, T., Nakamura, Y., Inoue, H.: Realtime humanoid motion generation through zmp manipulation based on inverted pendulum control. In: ICRA, pp. 1404–1409. IEEE, Los Alamitos (2002)Google Scholar
  3. 3.
    Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2001)Google Scholar
  4. 4.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: ICRA, pp. 1620–1626. IEEE, Los Alamitos (2003)Google Scholar
  5. 5.
    Antonelli, M., Libera, F.D., Minato, T., Ishiguro, H., Pagello, E., Menegatti, E.: Intuitive humanoid motion generation joining user-defined key-frames and automatic learning. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup 2008. LNCS (LNAI), vol. 5399, pp. 13–24. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Vukobratović, M., Borovac, B., Potkonjak, V.: Towards a unified understanding of basic notions and terms in humanoid robotics. Robotica 25(1), 87–101 (2007)CrossRefGoogle Scholar
  7. 7.
    Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control for biped robots. Robotics and Autonomous Systems (in press, 2009) (accepted manuscript)Google Scholar
  8. 8.
    Vukobratovic, M., Borovac, B.: Zero-moment point – Thirty five years of its life. International Journal of Humanoid Robotics 1(1), 157–173 (2004)CrossRefGoogle Scholar
  9. 9.
    Sardain, P., Bessonnet, G.: Forces acting on a biped robot. center of pressure - zero moment point. IEEE Transaction on Systems, Man, and Cybernetics (2004)Google Scholar
  10. 10.
    Goswami, A.: Foot rotation indicator (FRI) point: A new gait planning tooltoevaluate postural stability of biped robots. In: IEEE International Conference on Robotics and Automation, pp. 47–52 (1999)Google Scholar
  11. 11.
    Czarnetzki, S., Hebbel, M., Nisticò, W.: DoH!Bots: Team description for RoboCup 2007. In: RoboCup 2007: Robot Soccer World Cup XI. LNCS (LNAI). Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Buss, S.R.: Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. Department of Mathematics University of California, San Diego (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stefan Czarnetzki
    • 1
  • Sören Kerner
    • 1
  • Daniel Klagges
    • 1
  1. 1.Robotics Research Institute, Section Information TechnologyDortmund University of TechnologyDortmundGermany

Personalised recommendations