Creating Photo Maps with an Aerial Vehicle in USARsim

  • Heikow Bülow
  • Andreas Birk
  • Shams Feyzabadi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5949)


Photo maps, i.e., 2D grids that provide a large scale bird’s eye view of the environment, are of interest for many application scenarios but especially for safety and security missions. We present a very efficient and robust algorithm for this task, which only uses registration between consecutive images, i.e., it does not require any localization. The algorithm is benchmarked in USARsim, where the video stream of a down-looking camera of an aerial vehicle, namely a blimb, is used to generate a large scale photo map.


  1. 1.
    ELROB: European Land-Robot Trial, ELROB (2007),
  2. 2.
    Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnoerr, C.: Variational optical flow computation in real time. IEEE Transactions on Image Processing 14, 608–615 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Kohlberger, T., Schnoerr, C., Bruhn, A., Weickert, J.: Domain decomposition for variational optical-flow computation. IEEE Transactions on Image Processing 14, 1125–1137 (2005)CrossRefGoogle Scholar
  4. 4.
    Liu, H., Hong, T., Herman, M., Camus, T., Chellappa, R.: Accuracy vs efficiency trade-offs in optical flow algorithms. Computer Vision and Image Understanding 72, 271–286 (1998)CrossRefGoogle Scholar
  5. 5.
    McCane, B., Galvin, K.N.: On the evaluation of optical flow algorithms. In: Proceedings of the 5th International Conference On Control, Automation, Robotics and Vision, Singapore, pp. 1563–1567 (1998)Google Scholar
  6. 6.
    Beauchemin, S., Barron, J.: The computation of optical flow. ACM Computing Surveys (CSUR) 27, 433–466 (1995)CrossRefGoogle Scholar
  7. 7.
    Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  8. 8.
    Kehoe, J., Causey, R., Arvai, A., Lind, R.: Partial aircraft state estimation from optical flow using non-model-based optimization. In: American Control Conference, invited paper, Minneapolis, MN, pp. 2868–2873 (2006)Google Scholar
  9. 9.
    Fitzgibbon, A., Zisserman, A.: Automatic camera recovery for closed or open image sequences. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 311–318. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Azarbayejani, A., Pentland, A.P.: Recursive estimation of motion, structure, and focal length. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 562–575 (1995)CrossRefGoogle Scholar
  11. 11.
    Faugeras, O.: Three-dimensional computer vision – a geometric viewpoint (1993)Google Scholar
  12. 12.
    Adiv, G.: Inherent ambiguities in recovering 3-d motion and structure from a noisy flow field. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 477–489 (1989)CrossRefGoogle Scholar
  13. 13.
    Fitch, A., Kadyrov, A., Christmas, W., Kittler, J.: Fast robust correlation. IEEE Transactions on Image Processing 14, 1063–1073 (2005)CrossRefGoogle Scholar
  14. 14.
    Stricker, D.: Tracking with reference images: a real-time and markerless tracking solution for out-door augmented reality applications. In: Proceedings of the 2001 conference on Virtual reality, archeology, and cultural heritage, pp. 77–82. ACM Press, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Dorai, C., Wang, G., Jain, A.K., Mercer, C.: Registration and integration of multiple object views for 3d model construction. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 83–89 (1998)CrossRefGoogle Scholar
  16. 16.
    Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. 24(4), 325–376 (1992)CrossRefGoogle Scholar
  17. 17.
    Alliney, S., Morandi, C.: Digital image registration using projections. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 222–233 (1986)CrossRefGoogle Scholar
  18. 18.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings DARPA Image Understanding Workshop, pp. 121–130 (1981)Google Scholar
  19. 19.
    Pratt, W.: Correlation techniques of image registration. IEEE Transactions on Aerospace and Electronic Systems AES-10, 562–575 (1973)Google Scholar
  20. 20.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  21. 21.
    Birk, A., Carpin, S.: Merging occupancy grid maps from multiple robots. IEEE Proceedings, special issue on Multi-Robot Systems 94(7), 1384–1397 (2006)Google Scholar
  22. 22.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of International Conference on Computer Vision, pp. 1150–1157 (1999)Google Scholar
  23. 23.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proceedings of Computer Vision and Pattern Recognition (June 2003)Google Scholar
  24. 24.
    Gool, L.V., Moons, T., Ungureanu, D.: Affine/photometric invariants for planar intensity patterns. In: Proceedings of European Conference on Computer Vision (1996)Google Scholar
  25. 25.
    Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 1994 (1994)Google Scholar
  26. 26.
    Chen, Q., Defrise, M., Deconinck, F.: Symmetric phase-only matched filtering of fourier-mellin transforms for image registration and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 1156–1168 (1994)CrossRefGoogle Scholar
  27. 27.
    USARsim: Unified System for Automation and Robotics Simulator, USARsim (2006),
  28. 28.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Bridging the gap between simulation and reality in urban search and rescue. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Carpin, S., Lewis, M., Wang, J., Balarkirsky, S., Scrapper, C.: USARSim: a robot simulator for research and education. In: Proc. of the 2007 IEEE Intl. Conf. on Robotics and Automation, ICRA (2007)Google Scholar
  30. 30.
    Carpin, S., Stoyanov, T., Nevatia, Y., Lewis, M., Wang, J.: Quantitative assessments of usarsim accuracy. In: Proceedings of PerMIS (2006)Google Scholar
  31. 31.
    Carpin, S., Birk, A., Lewis, M., Jacoff, A.: High fidelity tools for rescue robotics: results and perspectives. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 301–311. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Heikow Bülow
    • 1
  • Andreas Birk
    • 1
  • Shams Feyzabadi
    • 1
  1. 1.Jacobs University BremenBremenGermany

Personalised recommendations