Multi-robot Cooperative Object Localization

Decentralized Bayesian Approach
  • João Santos
  • Pedro Lima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5949)

Abstract

We introduce a multi-robot/sensor cooperative object detection and tracking method based on a decentralized Bayesian approach which uses particle filters to avoid simplifying assumptions about the object motion and the sensors’ observation models. Our method is composed of a local filter and a team filter. The local filter receives a reduced dimension representation of its teammates’ sample belief about the object location, i.e., the parameters of a Gaussian Mixture Model (GMM) approximating the other sensors’ particles, and mixes the particles representing its own belief about the object location with particles sampling the received GMM. All particles are weighted by the local observation model and the best ones are re-sampled for the next local iteration. The team filter receives GMM representations of the object in the world frame, from the sensor teammates, and fuses them all performing Covariance Intersection among GMM components. The local estimate is used when the sensor sees the object, to improve its estimate from the teammates’ estimates. The team estimate is used when the sensor does not see the object alone. To prevent the fusion of incorrect estimates, the disagreement between estimates is measured by a divergence measure for GMMs. Results of the method application to real RoboCup MSL robots are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Durrant-Whyte, H.F.: Sensor models and multisensor integration. International Journal of Robotics Research 7(6), 97–113 (1988)CrossRefGoogle Scholar
  2. 2.
    Zhao, F., Shin, J., Reich, J.: Information-driven dynamic sensor collaboration for tracking applications. IEEE Signal Processing Magazine 19(2), 61–72 (2002)CrossRefGoogle Scholar
  3. 3.
    Azevedo, J.L., Lau, N., Corrente, G., Neves, A., Cunha, M.B., Santos, F., Pereira, A., Almeida, L., Lopes, L.S., Pedreiras, P., Vieira, J., Martins, D., Figueiredo, N., Silva, J., Filipe, N., Pinheiro, I.: Cambada 2008: Team description paper. University of Aveiro, Tech. Rep. (2008)Google Scholar
  4. 4.
    Zweigle, O., Kappeler, U.-P., Ruhr, T., Haussermann, K., Lafrenz, R., Schreiber, F., Tamke, A., Rajaie, H., Burla, A., Schanz, M., Levi, P.: Cops stuttgart team description 2007, University of Stuttgart, Tech. Rep. (2007)Google Scholar
  5. 5.
    Hafner, T., Lange, S., Lauer, M., Riedmiller, M.: Brainstormers tribots team description. University of Osnabruck, Tech. Rep. (2008)Google Scholar
  6. 6.
    Suzuki, T., Tomoyasu, N., Takafashi, M., Yoshida, K.: Eigen keio univ. team description. Keio University, Tech. Rep. (2008)Google Scholar
  7. 7.
    Lau, N., Lopes, L.S., Corrente, G.A.: Cambada: Information sharing and team coordination. In: Robótica 2008 (2008)Google Scholar
  8. 8.
    Ferrein, A., Hermanns, L., Lakemeyer, G.: Comparing sensor fusion techniques for ball position estimation. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 154–165. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Stroupe, A.W., Martin, M.C., Balch, T.: Merging probabilistic observations for mobile distributed sensing, Carnegie Mellon University, Tech. Rep. (2000)Google Scholar
  10. 10.
    Pinheiro, P., Lima, P.: Bayesian sensor fusion for cooperative object localization and world modeling. In: 8th Conference on Intelligent Autonomous Systems (2004)Google Scholar
  11. 11.
    Cai, A., Fakuda, T., Arai, F.: Information sharing among multiple robots for cooperation in cellular robotic system. In: Intelligent Robots and Systems (1997)Google Scholar
  12. 12.
    Steinbauer, G., Faschinger, M., Fraser, G., Muhlenfeld, A., Richter, S., Wober, G., Wolf, J.: Mostly harmless team description, Graz University of Technology, Tech. Rep. (2003)Google Scholar
  13. 13.
    Dietl, M., Gutmann, J.-S., Nebel, B.: Cs freiburg: Global view by cooperative sensing. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 133–143. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Pahliani, A., Lima, P.: Cooperative opinion pool: a new method for sensor fusion by a robot team. In: Intelligent Robots and Systems (2007)Google Scholar
  15. 15.
    Matt Rosencrantz, G.G., Thrun, S.: Decentralized sensor fusion with distributed particle filters. In: Conference on Uncertatinty in AI, UAI (2003)Google Scholar
  16. 16.
    Upcroft, B., Ong, L., Kumar, S., Ridley, M., Bailey, T., Sukkarieh, S., Durrant-Whyte, H.: Rich probabilistic representation for bearing only decentralized data fusion. In: 7th International Conference on Information Fusion (2005)Google Scholar
  17. 17.
    Taiana, M., Santos, J., Gaspar, J., Nascimento, J., Bernardino, A., Lima, P.: Color 3d model-based tracking with arbitrary projection model. In: SIMPAR Omnidirectional Vision Workshop (2008)Google Scholar
  18. 18.
    Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin Calcutta Mathematical Society (1943)Google Scholar
  19. 19.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, pp. 165–190, 236–242. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Bilmes, J.A.: A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. U.C. Berkeley, Tech. Rep. (1998)Google Scholar
  21. 21.
    Kullback, S.: Information Theory and Statistics. Dover Books (1968)Google Scholar
  22. 22.
    Beiji, H., Maes, S., Sorensen, J.: A distance measure between collections of distributions and its application to speaker recognition. In: International Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 753–756 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • João Santos
    • 1
  • Pedro Lima
    • 1
  1. 1.Institute for Systems and RoboticsInstituto Superior TécnicoLisboaPortugal

Personalised recommendations