A Characterization of 3D Sensors for Response Robots

  • Jann Poppinga
  • Andreas Birk
  • Kaustubh Pathak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5949)

Abstract

Sensors that measure range information not only in a single plane are becoming more and more important for mobile robots, especially for applications in unstructured environments like response missions where 3D perception and 3D mapping is of interest. Three such sensors are characterized here, namely a Hokuyo URG-04LX laser scanner actuated with a servo in a pitching motion, a Videre STOC stereo camera and a Swissranger SR-3000. The three devices serve as prototypical examples of the according technologies, i.e., 3D laser scanners, stereo vision and time-of-flight cameras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Howard, A., Wolf, D.F., Sukhatme, G.S.: Towards 3d mapping in large urban environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan (2004)Google Scholar
  2. 2.
    Thrun, S.D., Haehnel, D.F., Montemerlo, M., Triebel, R., Burgard, W., Baker, C., Omohundro, Z., Thayer, S., Whittaker, W.: A system for volumetric robotic mapping of abandoned mines. In: Proc. IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan (2003)Google Scholar
  3. 3.
    Hähnel, D., Burgard, W., Thrun, S.: Learning compact 3D models of indoor and outdoor environments with a mobile robot. Robotics and Autonomous Systems 44(1), 15–27 (2003)CrossRefGoogle Scholar
  4. 4.
    Davison, J., Kita, N.: 3d simultaneous localisation and map-building using active vision for a robot moving on undulating terrain. In: IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, December 8-14 (2001)Google Scholar
  5. 5.
    Liu, Y., Emery, R., Chakrabarti, D., Burgard, W., Thrun, S.: Using em to learn 3d models of indoor environments with mobile robots. In: 18th Conf. on Machine Learning, Williams College (2001)Google Scholar
  6. 6.
    Nuechter, A., Wulf, O., Lingemann, K., Hertzberg, J., Wagner, B., Surmann, H.: 3d mapping with semantic knowledge. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 335–346. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Poppinga, J., Birk, A., Pathak, K.: Hough based terrain classification for realtime detection of drivable ground. Journal of Field Robotics 25(1-2), 67–88 (2008)CrossRefGoogle Scholar
  8. 8.
    Point of Beginning 2006 3D Laser Scanner Hardware Survey (2006), http://www.pobonline.com/POB/Protected/Files/PDF/POB0506/LaserScanningSurvey.pdf
  9. 9.
    Langer, D., Mettenleiter, M., Frohlich, C.: Imaging laser scanners for 3-d modeling and surveying applications. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 116–121 (2000)Google Scholar
  10. 10.
    Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3d mapping. In: ICRA, pp. 321–328 (2000)Google Scholar
  11. 11.
    Wulf, O., Wagner, B.: Fast 3d-scanning methods for laser measurement systems. In: International Conference on Control Systems and Computer Science, CSCS14 (2003)Google Scholar
  12. 12.
    Surmann, H., Nuechter, A., Hertzberg, J.: An autonomous mobile robot with a 3d laser range finder for 3d exploration and digitalization of indoor environments. Robotics and Autonomous Systems 45(3-4), 181–198 (2003)CrossRefGoogle Scholar
  13. 13.
    Wulf, O., Brenneke, C., Wagner, B.: Colored 2d maps for robot navigation with 3d sensor data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2991–2996. IEEE Press, Los Alamitos (2004)Google Scholar
  14. 14.
    Automatic, H.: URG-04LX Scanning Laser Range Finder (2006), http://www.hokuyo-aut.jp/products/urg/urg.htm
  15. 15.
    Alwan, M., Wagner, M., Wasson, G., Sheth, P.: Characterization of infrared range-finder pbs-03jn for 2-d mapping. In: IEEE International Conference on Robotics and Automation, ICRA, pp. 3936–3941 (2005)Google Scholar
  16. 16.
    Ye, C., Borenstein, J.: Characterization of a 2d laser scanner for mobile robot obstacle negotiation. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 3, pp. 2512–2518 (2002)Google Scholar
  17. 17.
    Barnard, S.T., Fischler, M.A.: Computational stereo. ACM Comput. Surv. 14(4), 553–572 (1982)CrossRefGoogle Scholar
  18. 18.
    Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation. Autonomous Robots 8(2), 161–171 (2000)CrossRefGoogle Scholar
  19. 19.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  20. 20.
    Videre-Design (2006), http://www.videredesign.com/
  21. 21.
    Konolige, K.: The Small Vision System (2006), http://www.ai.sri.com/~konolige
  22. 22.
    Weingarten, J., Gruener, G., Siegwart, R.: A state-of-the-art 3d sensor for robot navigation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2155–2160. IEEE Press, Los Alamitos (2004)Google Scholar
  23. 23.
    Lange, R., Seitz, P.: Solid-state time-of-flight range camera. IEEE Journal of Quantum Electronics 37(3), 390–397 (2001)CrossRefGoogle Scholar
  24. 24.
    AG, M.I.: Swissranger SR-3000, Manual V1.02. (July 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jann Poppinga
    • 1
  • Andreas Birk
    • 1
  • Kaustubh Pathak
    • 1
  1. 1.Jacobs University BremenBremenGermany

Personalised recommendations