Robust and Computationally Efficient Navigation in Domestic Environments

  • Dirk Holz
  • Gerhard K. Kraetzschmar
  • Erich Rome
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5949)

Abstract

Presented in this paper is a complete system for robust autonomous navigation in cluttered and dynamic environments. It consists of computationally efficient approaches to the problems of simultaneous localization and mapping, path planning, and motion control, all based on a memory-efficient environment representation. These components have been implemented and integrated with additional components for human-robot interaction and object manipulation on a mobile manipulation platform for service robot applications. The resulting system performed very successfully in the 2008 RoboCup@Home competition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  2. 2.
    Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A., Hertzberg, J.: Globally Consistent 3D Mapping with Scan Matching. Journal of Robotics and Autonomous Systems 56(2), 130–142 (2008)CrossRefGoogle Scholar
  3. 3.
    Fortune, S.J.: A Sweepline Algorithm for Voronoi Diagrams. Algorithmica, 153–174 (1987)Google Scholar
  4. 4.
    Graham, R.L.: An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set. Information Processing Letters 1(4), 132–133 (1972)CrossRefGoogle Scholar
  5. 5.
    Grisetti, G., Lordi Rizzini, D., Stachniss, C., Olson, E., Burgard, W.: Online Constraint Network Optimization for Efficient Maximum Likelihood Map Learning. In: Proceedings of the IEEE International Conference on Robotics and Automation (2008)Google Scholar
  6. 6.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics 23(1), 34–46 (2007)CrossRefGoogle Scholar
  7. 7.
    Haegele, M., Neugebauer, J., Schraft, R.: From Robots to Robot Assistants. In: Proceedings of the International Symposium on Robotics (2001)Google Scholar
  8. 8.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)CrossRefGoogle Scholar
  9. 9.
    Holz, D., Lörken, C., Surmann, H.: Continuous 3D Sensing for Navigation and SLAM in Cluttered and Dynamic Environments. In: Proceedings of the International Conference on Information Fusion, FUSION (2008)Google Scholar
  10. 10.
    Indiveri, G.: Kinematic Time-invariant Control of a 2d Nonholonomic Vehicle. In: Proceedings of the 38th Conference on Decision and Control (1999)Google Scholar
  11. 11.
    Indiveri, G., Corradini, M.L.: Switching linear path following for bounded curvature car-like vehicles. In: Proceedings of the IFAC Symposium on Intelligent Autonomous Vehicles (2004)Google Scholar
  12. 12.
    Lörken, C.: Introducing Affordances into Robot Task Execution. In: Kühnberger, K.-U., König, P., Ludewig, P. (eds.) Publications of the Institute of Cognitive Science (PICS), vol. 2-2007. University of Osnabrück, Osnabrück, Germany (2007)Google Scholar
  13. 13.
    Lorusso, A., Eggert, D.W., Fisher, R.B.: A Comparison of Four Algorithms for estimating 3-D Rigid Transformations. In: Proceedings of the British conference on Machine vision, BMVC, pp. 237–246 (1995)Google Scholar
  14. 14.
    Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. Sensor Devices and Systems for Robotics, 253–276 (1989)Google Scholar
  15. 15.
    Mount, D., Arya, S.: ANN: A library for approximate nearest neighbor searching. In: Proceedings of the 2nd Annual Fall Workshop on Computational Geometry (1997)Google Scholar
  16. 16.
    Nüchter, A., Lingemann, K., Hertzberg, J., Surmann, H.: 6D SLAM – 3D Mapping Outdoor Environments. Journal of Field Robotics 24(8-9), 699–722 (2007)CrossRefGoogle Scholar
  17. 17.
    Pollack, M.E., Engberg, S., Matthews, J.T., Thrun, S., Brown, L., Colbry, D., Orosz, C., Peintner, B., Ramakrishnan, S., Dunbar-Jacob, J., McCarthy, C., Pineau, J., Montemerlo, M., Roy, N.: Pearl: A Mobile Robotic Assistant for the Elderly. In: Proceedings of the AAAI Workshop on Automation as Eldercare (August 2002)Google Scholar
  18. 18.
    Rusinkiewicz, S., Levoy, M.: Efficient Variants of the ICP Algorithm. In: Proceedings of the International Conference on 3D Digital Imaging and Modeling (2001)Google Scholar
  19. 19.
    Siegwart, R., Arras, K.O., Bouabdallah, S., Burnier, D., Froidevaux, G., Greppin, X., Jensen, B., Lorotte, A., Mayor, L., Meisser, M., Philippsen, R., Piguet, R., Ramel, G., Terrien, G., Tomatis, N.: Robox at Expo.02: A large-scale installation of personal robots. Robotics and Autonomous Systems 42(3-4), 203–222 (2003)CrossRefGoogle Scholar
  20. 20.
    Wang, C.-C.: Simultaneous localization, mapping and moving object tracking. PhD Thesis CMU-RI-TR-04-23, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (April 2004)Google Scholar
  21. 21.
    Wisspeintner, T., Bose, A.: The VolksBot Concept – Rapid Prototyping for real-life Applications in Mobile Robotics. it – Information Technology 47(5), 274–281 (2005)CrossRefGoogle Scholar
  22. 22.
    Wulf, O., Nüchter, A., Hertzberg, J., Wagner, B.: Benchmarking Urban Six-Degree-of-Freedom Simultaneous Localization and Mapping. Journal of Field Robotics 25(3), 148–163 (2008)CrossRefGoogle Scholar
  23. 23.
    Zivkovic, Z., Booij, O., Kröse, B.: From images to rooms. Robotics and Autonomous System 55(5), 411–418 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dirk Holz
    • 1
    • 2
  • Gerhard K. Kraetzschmar
    • 1
  • Erich Rome
    • 2
  1. 1.Computer Science DepartmentBonn-Rhein-Sieg University of Applied Sciences 
  2. 2.Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS) 

Personalised recommendations