Downscaling Climate Simulations for Use in Hydrological Modeling of Medium-Sized River Catchments

  • Peter Berg
  • Hans-Jürgen Panitz
  • Gerd Schädler
  • Hendrik Feldmann
  • Christoph Kottmeier
Conference paper

Abstract

To assess a possible future change in flood and drought risks for medium and small-scale river catchments, one needs to have data of a higher spatial and temporal resolution than what is provided by the global climate models. The COSMO-CLM regional climate model has to this purpose been used to downscale a set of global climate simulations to a 7 km horizontal resolution. In order to assess some of the uncertainties involved in near future scenario simulations, several different global simulations are downscaled to produce an ensemble of high resolution data. This will then be used as input to hydrological catchment models to assess future changes in flood risk for three catchments in Germany, within the CEDIM-project “Flood hazard in a changing climate” (Hochwassergefahr durch Klimawandel).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doms, G. and U. Schättler (2002): A description of the nonhydrostatic regional model LM, Part I: Dynamics and Numerics. COSMO Newsletter, 2, 225–235. Google Scholar
  2. 2.
    Röckner, E. (2006a): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M run no.1: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_20C_1_6H]
  3. 3.
    Röckner, E. (2006b): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M run no.2: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_20C_2_6H]
  4. 4.
    Röckner, E. (2006c): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M run no.3: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_20C_3_6H]
  5. 5.
    Röckner, E., Lautenschlager, M., Schneider, H. (2006a): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.1: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_1_6H]
  6. 6.
    Röckner, E., Lautenschlager, M., Schneider, H. (2006c): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.2: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_2_6H]
  7. 7.
    Röckner, E., Lautenschlager, M., Schneider, H. (2006b): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.3: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. [doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_3_6H]
  8. 8.
    Meissner, C. and G. Schädler (2007): Modelling the Regional Climate of Southwest Germany: Sensitivity to Simulation Setup. In: High Performance Computing in Science and Engineering ’07 [W.E. Nagel, D. Kröner, M. Resch (Eds.)]. ISBN 978-3-540-74738-3, Springer Berlin Heidelberg New York. Google Scholar
  9. 9.
    Meissner, C., G. Schädler, H.-J. Panitz, H. Feldmann, and Ch. Kottmeier (2009): High resolution sensitivity studies with the regional climate model COSMO-CLM. Meteoroligsche Zeitschrift, 18, 543–557, doi:10.1127/0941-2948/20090400. CrossRefGoogle Scholar
  10. 10.
    Uppala, M., P.W. Kållberg, A.J. Simmons, U. Andrae, V. Da Costa Bechtold, M. Fiorino, J.K. Gibson, J. Haseler, A. Hernandez, G.A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R.P. Allan, E. Andersson, K. Arpe, M.A. Balmaseda, A.C.M. Beljaars, L. Van de Berg, J. Bildlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fischer, M. Fuentes, S. Hagemann, E. Hólm, B.J. Hoskins, L. Isaksen, P.A.E.M. Janssen, R. Jenne, A.P. McNally, J.-F. Mahfouf, J.-J. Morcrette, N.A. Rayner, R.W. Saunders, P. Simon, A. Sterl, K.E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo, J. Woolen, (2005): The ERA40 re-analysis, Q.J.R Meteorol. Soc., 131, 2961–3012. CrossRefGoogle Scholar
  11. 11.
    Nakicenovic, N. et al. (2000). Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 599 pp. Available online at: http://www.grida.no/climate/ipcc/emission/index.htm. Google Scholar
  12. 12.
    Panitz, H.-J., G. Schädler, and H. Feldmann (2010): Modelling Regional Climate Change in Southwest Germany, In: High Performance Computing in Science and Engineering ’09 [W.E. Nagel, D. Kröner, M. Resch (Eds.)]. ISBN 978-3-642-04664-3, Springer Berlin Heidelberg New York 2010. Google Scholar
  13. 13.
    Panitz, H.-J., G. Schädler, and H. Feldmann (2009): Modelling Regional Climate Change in Southwest Germany. Oral presentation, The 12th Results and Review Workshop of the HLRS, October 8–9, 2009, at the High Performance Computing Center Stuttgart. Google Scholar
  14. 14.
    Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones and M. New (2008): A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201. CrossRefGoogle Scholar
  15. 15.
    Deutscher Wetterdienst (DWD), Germany (2008). Google Scholar
  16. 16.
    Deutscher Wetterdienst (DWD)/Potsdam-Institut für Klimafolgenforschung (PIK), Germany (2008): Meteorologischer Datensatz für Deutschland 1951–2006. Google Scholar
  17. 17.
    Yang, D., E. Elomaa, A. Tuominen, A. Aaltonen, B. Goodison, T. Gunther, V. Golubev, B. Sevruk, H. Madsen, and J. Milkovic (1999): Wind-induced precipitation undercatch of the Hellmann gauges. Nordic Hydrology, 30, 57–80. Google Scholar
  18. 18.
    BMU (2003): Hydrologischer Atlas von Deutschland, Freiburg, ISBN:3-00-005624-6. Google Scholar
  19. 19.
    McFarlane, N.A., J.F. Scinocca, M. Lazare, R. Harvey, D. Verseghy, and J. Li (2005): The CCCma third generation atmospheric general circulation model. CCCma Internal Rep., 25 pp. Google Scholar
  20. 20.
    Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. and Phys., 8, 7055–7074. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter Berg
    • 1
  • Hans-Jürgen Panitz
    • 1
  • Gerd Schädler
    • 1
  • Hendrik Feldmann
    • 1
  • Christoph Kottmeier
    • 1
  1. 1.Institut für Meteorologie und KlimaforschungKarlsruhe Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations