Compressible Lattice Boltzmann Method and Applications

  • Weibing Feng
  • Bing He
  • Anping Song
  • Yang Wang
  • Miao Zhang
  • Wu Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5938)

Abstract

Lattice Boltzmann Method (LBM) is a novel numerical method for flows simulations. Compared with classic methods of Finite Difference Method, Finite Volume Method and Finite Element Method, LBM has numerous advantages, including inherent parallelization and simplicity of boundary condition treatment. The LBM usually has a constraint of incompressible fluid (Mach number less than 0.4). A variant of the LBM is studied and used to deal with compressible fluid with Mach number up to 0.9 in this paper. Special emphasis is placed on mesh generation of 3-D complete geometry in Cartesian coordinate system. Numerical experiments are fulfilled in 2-D and 3-D compressible flows. Performance evaluation of the algorithm demonstrates high parallel efficiency and prefect scalability. Numerical results indicate that the LBM is successful with the simulation of compressible fluid.

Keywords

Lattice Boltzmann Method Compressible fluid Mesh generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qian, Y.H., d’Humieres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479 (1992)CrossRefMATHGoogle Scholar
  2. 2.
    Alexander, F.J., Chen, H., Doolen, G.D.: Lattice Boltzmann model for compressible fluids. Phys. Rev. A 46(4), 1967–1970 (1992)CrossRefGoogle Scholar
  3. 3.
    Alexander, F., Chen, H., Chen, S., et al.: Lattice Boltzmann model for compressible fluids. Physical Review A 46(4), 1967–1970 (1992)CrossRefGoogle Scholar
  4. 4.
    Yu, H., Zhao, K.: Lattice Boltzmann method for compressible flows with high Mach numbers. Physical Review E 61(4), 3867–3870 (2000)CrossRefGoogle Scholar
  5. 5.
    Palmer, B., Rector, D.: Lattice Boltzmann algorithm for simulating thermal flow in compressible fluids. J. Comput. Phys. 161(1), 1–20 (2000)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    He, X., Chen, S., Doolen, G.D.: A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit. Journal of Computational Physics 146(1), 282–300 (1998)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Qu, K., Shu, C., Chew, Y.: Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Physical Review E 75(3), 036706 (2007)Google Scholar
  8. 8.
    Li, Q., He, Y., Wang, Y., et al.: Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 76(5), 056705–056735 (2007)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Sun, C., Hsu, A.: Multi-level lattice Boltzmann model on square lattice for compressible flows. Computers and Fluids 33(10), 1363–1385 (2004)CrossRefMATHGoogle Scholar
  10. 10.
    Yan, G., Zhang, J., Liu, Y., et al.: A multi-energy-level lattice Boltzmann model for the compressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 55(1), 41–56 (2007)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Shan, X., Yuan, X.F., Chen, H.: Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation. Journal of Fluid Mechanics 550, 413–441 (2006)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Weibing Feng
    • 1
    • 2
  • Bing He
    • 1
    • 2
  • Anping Song
    • 1
  • Yang Wang
    • 2
  • Miao Zhang
    • 3
  • Wu Zhang
    • 1
    • 2
  1. 1.School of Computer Engineering and ScienceShanghai UniversityShanghaiChina
  2. 2.High Performance Computing CenterShanghai UniversityShanghaiChina
  3. 3.Shanghai Aircraft Design and Research InstituteCommercial Aircraft Corporation of China, Ltd.ShanghaiChina

Personalised recommendations