Markerless Human Motion Capture Using Hierarchical Particle Swarm Optimisation

  • Vijay John
  • Spela Ivekovic
  • Emanuele Trucco
Part of the Communications in Computer and Information Science book series (CCIS, volume 68)


In this paper, we address full-body articulated human motion tracking from multi-view video sequences acquired in a studio environment. The tracking is formulated as a multi-dimensional nonlinear optimisation and solved using particle swarm optimisation (PSO), a swarm-intelligence algorithm which has gained popularity in recent years due to its ability to solve difficult nonlinear optimisation problems. Our tracking approach is designed to address the limits of particle filtering approaches: it initialises automatically, removes the need for a sequence-specific motion model and recovers from temporary tracking divergence through the use of a powerful hierarchical search algorithm (HPSO). We quantitatively compare the performance of HPSO with that of the particle filter (PF), annealed particle filter (APF) and partitioned sampling annealed particle filter (PSAPF). Our test results, obtained using the framework proposed by Balan et al [1] to compare articulated body tracking algorithms, show that HPSO’s pose estimation accuracy and consistency is better than PF, APF and PSAPF.


Particle Swarm Optimisation Mean Square Error Particle Swarm Optimisation Algorithm Swarm Intelligence Body Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balan, A.O., Sigal, L., Black, M.J.: A Quantitative Evaluation of Video-based 3D Person Tracking. In: Proceedings of ICCCN, pp. 349–356 (2005)Google Scholar
  2. 2.
    Poli, R., Kennedy, J., Blackwell, T., Freitas, A.: Editorial for Particle Swarms: The Second Decade. Journal of Artificial Evolution and Applications 1(1), 1–3 (2008)Google Scholar
  3. 3.
    Poli, R.: An Analysis of Publications on Particle Swarm Optimisation Applications. Technical Report, University of Essex, Department of Computer Science (2007)Google Scholar
  4. 4.
    Caillette, F., Galata, A., Howard, T.: Real-Time 3-D Human Body Tracking using Learnt Models of Behaviour. Computer Vision and Image Understanding 109(2), 112–125 (2008)CrossRefGoogle Scholar
  5. 5.
    Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision and Image Understanding 108(1-2), 4–18 (2007)CrossRefGoogle Scholar
  6. 6.
    Vondrak, M., Sigal, L., Jenkins, O.C.: Physical Simulation for Probabilistic Motion Tracking. In: Proceedings of CVPR, pp. 1–8 (2008)Google Scholar
  7. 7.
    Husz, Z., Wallace, A., Green, P.: Evaluation of a Hierarchical Partitioned Particle Filter with Action Primitives. In: CVPR 2nd Workshop on Evaluation of Articulated Human Motion and Pose Estimation (2007)Google Scholar
  8. 8.
    Ivekovic, S., Trucco, E., Petillot, Y.: Human Body Pose Estimation with Particle Swarm Optimisation. Evolutionary Computation 16(4) (2008)Google Scholar
  9. 9.
    MacCormick, J., Isard, M.: Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 3–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Starck, J., Hilton, A.: Surface Capture for Performance Based Animation. IEEE Computer Graphics and Applications 27(3), 21–31 (2007)CrossRefGoogle Scholar
  11. 11.
    Shi, Y.H., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings of CEC, pp. 69–73 (1998)Google Scholar
  12. 12.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of ICNN, vol. 4, pp. 1942–1948 (1995)Google Scholar
  13. 13.
    Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision and Image Understanding 108(1-2), 4–18 (2007)CrossRefGoogle Scholar
  14. 14.
    Sminchisescu, C., Triggs, B.: Estimating Articulated Human Motion With Covariance Scaled Sampling. International Journal of Robotic Research 22(6), 371–392 (2003)CrossRefGoogle Scholar
  15. 15.
    Zhang, X., Hu, W., Maybank, S., Li, X., Zhu, M.: Sequential Particle Swarm Optimization for Visual Tracking. In: Proceedings of CVPR (2008)Google Scholar
  16. 16.
    Robertson, C., Trucco, E., Ivekovic, S.: Dynamic body posture tracking using evolutionary optimisation. Electronics Letters 41(25), 1370–1371 (2005)CrossRefGoogle Scholar
  17. 17.
    Ivekovic, S., Trucco, E.: Human Body Pose Estimation with PSO. In: Proceedings of CEC, pp. 1256–1263 (2006)Google Scholar
  18. 18.
    Robertson, C., Trucco, E.: Human body posture via hierarchical evolutionary optimization. In: Proceedings of BMVC, III, p. 999 (2006)Google Scholar
  19. 19.
    Deutscher, J., Reid, I.: Articulated Body Motion Capture by Stochastic Search. International Journal of Computer Vision 61(2), 185–205 (2005)CrossRefGoogle Scholar
  20. 20.
    Isard, M., Blake, A.: CONDENSATION- conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  21. 21.
    Bandouch, J., Engstler, F., Beetz, M.: Evaluation of Hierarchical Sampling Strategies in 3D Human Pose Estimation. In: Proceedings of British Machine Vision Conference (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vijay John
    • 1
  • Spela Ivekovic
    • 1
  • Emanuele Trucco
    • 1
  1. 1.School of ComputingUniversity of DundeeDundeeU.K.

Personalised recommendations