How Do Emotions Induce Dominant Learners’ Mental States Predicted from Their Brainwaves?

  • Alicia Heraz
  • Claude Frasson
Part of the Communications in Computer and Information Science book series (CCIS, volume 67)


In this paper we discuss how learner’s electrical brain activity can be influenced by emotional stimuli. We conducted an experiment in which we exposed 17 learners to a set of pictures from the International Affective Picture System (IAPS) while their electrical brain activity was recorded. We got 33.106 recordings. In an exploratory study we examined the influence of 24 picture categories from the IAPS on the amplitude variations of the 4 brainwaves frequency bands: (, (, ( and (. We used machine learning techniques to track the amplitudes in order to predict the dominant frequency band which inform about the learner mental and emotional states. Correlation and regression analyses show a significant impact of the emotional stimuli on the amplitudes of the brainwave frequency bands. Standard classification techniques were used to assess the reliability of the automatic prediction of the dominant frequency band. The reached accuracy was 90%.


Electrical Brain Activity Machine Learning Techniques Learner Brainwaves Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bear, M.F., Connors, B.W., Paradiso, M.A.: Neuroscience: Exploring the Brain, 2nd edn. Lippincott Williams & Williams, Baltimore (2001)Google Scholar
  2. 2.
    Bellifemine, F., Poggi, A., Rimassa, G.: JADE - A FIPA-compliant Agent Framework. In: PAAM 1999, London, UK (1999)Google Scholar
  3. 3.
    Bradley, M.M., Codispoti, M., Cuthbert, B.N., Lang, P.J.: Emotion and motivation: Defensive and appetitive reactions in picture processing. Emotion 1 (2001)Google Scholar
  4. 4.
    Cantor, D.S.: An overview of quantitative EEG and its applications to neurofeedback. In: Evans, J.R., Abarbanel, A. (eds.) Introduction to Quantitative EEG and Neurofeedback. Academic Press, London (1999)Google Scholar
  5. 5.
    Conati, C.: Probabilistic assessment of user’s emotions in educational games. Journal of Applied Artificial Intelligence (2002)Google Scholar
  6. 6.
    Conati, C.: How to evaluate models of user affect? In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 288–300. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Conati, C., Mclaren, H.: Data-driven Refinement of a Probabilistic Model of User Affect. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 40–49. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    D’Mello, S.K., Craig, S.D., Gholson, B., Franklin, S., Picard, R.W., Graesser, A.C.: Integrating Affect Sensors in an Intelligent Tutoring System. In: Affective Interactions: The Computer in the Affective Loop Workshop at 2005 International conference on Intelligent User Interfaces. ACM Press, New York (2005)Google Scholar
  9. 9.
    Ekman, P.: Are there basic emotions? Psychological Review (1992)Google Scholar
  10. 10.
    Fan, C., Sarrafzadeh, A., Overmyer, S., Hosseini, H.G., Biglari-Abhari, M., Bigdeli, A.: A fuzzy approach to facial expression analysis in intelligent tutoring systems. In: Méndez-Vilas, A., Mesa González, J.A (eds.) (2003)Google Scholar
  11. 11.
    Heraz, A., Frasson, C.: Predicting the three major dimensions of the learner’s emotions from brainwaves. International Journal of Computer Science (2008)Google Scholar
  12. 12.
    Heraz, A., Razaki, R., Frasson, C.: Using machine learning to predict learner emotional state from brainwaves. In: 7th IEEE conference on Advanced Learning Technologies: ICALT 2007, Niigata, Japan (2007)Google Scholar
  13. 13.
    Kort, B., Reilly, R., Picard, R.: An affective model of interplay between emotions and learning: Reengineering educational pedagogy—building a learning companion. In: Okamoto, T., Hartley, R., Kinshuk, Klus, J.P. (eds.) Proceedings IEEE International Conference on Advanced Learning Technology (2001)Google Scholar
  14. 14.
    Mandler, G.: Emotion. In: Bly, B.M., Rumelhart, D.E. (eds.) Cognitive science. Handbook of perception and cognition, 2nd edn. Academic Press, San Diego (1999)Google Scholar
  15. 15.
    McMilan, B.: (2006),
  16. 16.
    Mikels, J.A., Fredrickson, B.L., Larkin, G.R., Lindberg, C.M., Maglio, S.J., Reuter-Lorenz, P.A.: Emotional category data on images from the International Affective Picture System. Behav. Res. Methods 37 (2005)Google Scholar
  17. 17.
    Palke, A.: Brainathlon: Enhancing Brainwave Control Through Brain-Controlled Game Play. Master thesis, Mills College, Oakland, California, USA (2004)Google Scholar
  18. 18.
    Panksepp, J.: Affective neuroscience: The foundations of human and animal emotion. Oxford University Press, New York (1998)Google Scholar
  19. 19.
    Picard, R.W.: Affective computing. MIT Press, Cambridge (1997)Google Scholar
  20. 20.
    Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  21. 21.
    Robson, C.: Real word research: A resource for social scientist and practitioner researchers. Blackwell, Oxford (1993)Google Scholar
  22. 22.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2005)Google Scholar
  23. 23.
    Youden, W.J.: How to evaluate accuracy. Materials Research and Standards, ASTM (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alicia Heraz
    • 1
  • Claude Frasson
    • 1
  1. 1.HERON LabUniversity of MontrealMontrealCanada

Personalised recommendations