On the Characterization of Level Planar Trees by Minimal Patterns

  • Alejandro Estrella-Balderrama
  • J. Joseph Fowler
  • Stephen G. Kobourov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)

Abstract

We consider characterizations of level planar trees. Healy et al. [8] characterized the set of trees that are level planar in terms of two minimal level non-planar (MLNP) patterns. Fowler and Kobourov [7] later proved that the set of patterns was incomplete and added two additional patterns. In this paper, we show that the characterization is still incomplete by providing new MLNP patterns not included in the previous characterizations. Moreover, we introduce an iterative method to create an arbitrary number of MLNP patterns, thus proving that the set of minimal patterns that characterizes level planar trees is infinite.

References

  1. 1.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Computational Geometry: Theory and Applications 36(2), 117–130 (2007)MATHMathSciNetGoogle Scholar
  2. 2.
    Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.-M.: Layer-free upward crossing minimization. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 55–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Transactions on Systems, Man, and Cybernetics 18(6), 1035–1046 (1989)CrossRefGoogle Scholar
  4. 4.
    Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Estrella-Balderrama, A.: Simultaneous Embedding and Level Planarity. PhD thesis, Department of Computer Science, University of Arizona (2009)Google Scholar
  6. 6.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. Computational Geometry: Theory and Applications 42(7), 704–721 (2009)MATHMathSciNetGoogle Scholar
  7. 7.
    Fowler, J.J., Kobourov, S.G.: Minimum level nonplanar patterns for trees. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 69–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Healy, P., Kuusik, A., Leipert, S.: A characterization of level planar graphs. Discrete Mathematics 280(1-3), 51–63 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs. II. SIAM Journal on Computing 28(5), 1588–1626 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs. I. SIAM Journal on Computing 28(4), 1510–1539 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jünger, M., Lee, E.K., Mutzel, P., Odenthal, T.: A polyhedral approach to the multi-layer crossing minimization problem. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 13–24. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Jünger, M., Leipert, S.: Level planar embedding in linear time. Journal of Graph Algorithms and Applications 6(1), 67–113 (2002)MATHMathSciNetGoogle Scholar
  13. 13.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Kuratowski, C.: Sur les problèmes des courbes gauches en Topologie. Fundamenta Mathematicae 15, 271–283 (1930)MATHGoogle Scholar
  15. 15.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alejandro Estrella-Balderrama
    • 1
  • J. Joseph Fowler
    • 1
  • Stephen G. Kobourov
    • 1
  1. 1.Department of Computer ScienceUniversity of Arizona 

Personalised recommendations