Planar Drawings of Higher-Genus Graphs

  • Christian A. Duncan
  • Michael T. Goodrich
  • Stephen G. Kobourov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)

Abstract

In this paper, we give polynomial-time algorithms that can take a graph G with a given combinatorial embedding on an orientable surface \(\cal S\) of genus g and produce a planar drawing of G in R 2, with a bounding face defined by a polygonal schema \(\cal P\) for \(\cal S\). Our drawings are planar, but they allow for multiple copies of vertices and edges on \(\cal P\)’s boundary, which is a common way of visualizing higher-genus graphs in the plane. As a side note, we show that it is NP-complete to determine whether a given graph embedded in a genus-g surface has a set of 2g fundamental cycles with vertex-disjoint interiors, which would be desirable from a graph-drawing perspective.

References

  1. 1.
    Chen, J., Kanchi, S.P., Kanevsky, A.: A note on approximating graph genus. Information Processing Letters 61(6), 317–322 (1997)CrossRefMathSciNetGoogle Scholar
  2. 2.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Planar drawings of higher-genus graphs. Technical report (August 2009), http://arxiv.org/abs/0908.1608
  4. 4.
    Eppstein, D.: The topology of bendless three-dimensional orthogonal graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 78–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. In: Proc. of the 18th ACM Symp. on Computational Geometry (SCG), pp. 244–253 (2002)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4(3), 312–316 (1983)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kocay, W., Neilson, D., Szypowski, R.: Drawing graphs on the torus. Ars Combinatoria 59, 259–277 (2001)MATHMathSciNetGoogle Scholar
  8. 8.
    Lazarus, F., Pocchiola, M., Vegter, G., Verroust, A.: Computing a canonical polygonal schema of an orientable triangulated surface. In: Proc. of the 17th ACM Symp. on Computational Geometry (SCG), pp. 80–89 (2001)Google Scholar
  9. 9.
    Miura, K., Nakano, S.-I., Nishizeki, T.: Grid drawings of 4-connected plane graphs. Discrete and Computational Geometry 26(1), 73–87 (2001)MATHMathSciNetGoogle Scholar
  10. 10.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins U. Press, Baltimore (2001)MATHGoogle Scholar
  11. 11.
    Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10(4), 568–576 (1989)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tutte, W.T.: Convex representations of graphs. Proceedings London Mathematical Society 10(38), 304–320 (1960)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tutte, W.T.: How to draw a graph. Proc. Lon. Math. Soc. 13(52), 743–768 (1963)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Vodopivec, A.: On embeddings of snarks in the torus. Discrete Mathematics 308(10), 1847–1849 (2008)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zitnik, A.: Drawing graphs on surfaces. SIAM J. Disc. Math. 7(4), 593–597 (1994)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christian A. Duncan
    • 1
  • Michael T. Goodrich
    • 2
  • Stephen G. Kobourov
    • 3
  1. 1.Dept. of Computer ScienceLouisiana Tech Univ 
  2. 2.Dept. of Computer ScienceUniv. of CaliforniaIrvine
  3. 3.Dept. of Computer ScienceUniversity of Arizona 

Personalised recommendations