Drawing Planar 3-Trees with Given Face-Areas

  • Therese Biedl
  • Lesvia Elena Ruiz Velázquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


We study straight-line drawings of planar graphs such that each interior face has a prescribed area. It was known that such drawings exist for all planar graphs with maximum degree 3. We show here that such drawings exist for all planar partial 3-trees, i.e., subgraphs of a triangulated planar graph obtained by repeatedly inserting a vertex in one triangle and connecting it to all vertices of the triangle. Moreover, vertices have rational coordinates if the face-areas are rational, and we can bound the resolution. We also give some negative results for other graph classes.


Planar Graph Face Area Graph Class Outerplanar Graph Interior Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted plane graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 61–72. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal rectangular layouts. In: Proceedings of the 25th Annual Symposium on Computational Geometry. SCG 2009, Aarhus, Denmark, June 08-10, pp. 267–276. ACM, New York (2009)CrossRefGoogle Scholar
  3. 3.
    Fáry, I.: On straight line representation of planar graphs. Acta. Sci. Math. Szeged 11, 229–233 (1948)Google Scholar
  4. 4.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Geelen, J., Guo, A., McKinnon, D.: Straight line embeddings of cubic planar graphs with integer edge lengths. Journal of Graph Theory 58(3), 270–274 (2008)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kratochvil, J., Thomas, R.: Manuscript (in preparation)Google Scholar
  7. 7.
    Ringel, G.: Equiareal graphs. In: Contemporary methods in graph theory, in honour of Prof. Dr. K. Wagner, pp. 503–505 (1990)Google Scholar
  8. 8.
    Schnyder, W.: Embedding planar graphs on the grid. In: 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148 (1990)Google Scholar
  9. 9.
    Stein, S.: Convex maps. Amer. Math. Soc. 2, 464–466 (1951)MATHCrossRefGoogle Scholar
  10. 10.
    Thomassen, C.: Plane cubic graphs with prescribed face areas. Combinatorics, Probability & Computing 1, 371–381 (1992)MATHMathSciNetGoogle Scholar
  11. 11.
    van Kreveld, M., Speckmann, B.: On rectangular cartograms. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 724–735. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung 46, 26–32 (1936)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Therese Biedl
    • 1
  • Lesvia Elena Ruiz Velázquez
    • 1
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations